Browse > Article
http://dx.doi.org/10.5352/JLS.2009.19.4.423

AMP-activated Kinase Regulates Adipocyte Differentiation Process in 3T3-L1 Adipocytes Treated with Selenium  

Park, Song-Yi (Department of Biological Sciences, Hannam University Daedeok Valley Campus)
Hwang, Jin-Taek (Korea Food Research Institute, Functional Food Reserch center)
Lee, Yun-Kyoung (Department of Food and Nutrition, Hannam University Daedeok Valley Campus)
Kim, Young-Min (Department of Biological Sciences, Hannam University Daedeok Valley Campus)
Park, Ock-Jin (Department of Food and Nutrition, Hannam University Daedeok Valley Campus)
Publication Information
Journal of Life Science / v.19, no.4, 2009 , pp. 423-428 More about this Journal
Abstract
Selenium was investigated using human origin preadipocytes to see whether it possesses preventive or therapeutic effects for obesity. Unveiling the potential of selenium in the reduction of adipogenesis can help predict the therapeutic capabilities of selenium in obesity. In the present study, the molecular mechanism of the inhibition of adipogenesis by selenium was explored to unravel the involvement of the AMP-activated protein kinase. There is emerging evidence that AMPK, a sensor of cellular energy status, is a possible molecular target of controlling adipocyte differentiation on the basis of discovery that AMPK is responsible for the major metabolic responses to exercise, and integration of nutritional and hormonal signals to modulate feeding behavior or energy expenditure in the hypothalamus. Treatment of selenium resulted in inhibition of the adipocyte differentiation process and induction of mature apoptosis in 3T3-L1 adipocytes. We hypothesized that selenium may exert anti-adipogenic potential though modulating AMPK. We have found that selenium significantly activated AMPK and phosphorylated its substrate acetyl-CoA carboxylase ($ACC-serine^{79}$) during the inhibitory process of adipocytes. Also, the inhibition process of adipocyte differentiation by selenium was comparable to either reveratrol or a synthetic AMPK activator, AICAR (5-aminoimidazole-4-carboxamide-1-${\beta}$-D-ribofuranoside). To evaluate the involvement of AMPK in anti-lipogensis, we applied AICAR and Compound C, an AMPK inhibitor, to 3T3-L1-adipocytes and found that AMPK is required for the adipocyte differentiation blocking process. These results suggest that selenium has a potential to control adipogenesis and that this effect is mediated by AMPK, an essential kinase for both inhibition of adipocyte differentiation and apoptosis of mature adipocytes.
Keywords
Selenium; AMP-activated protein kinase; adipocyte differentiation; 3T3-L1-preadipocytes; 5-aminoimidazole-4-carboxamide-1-${\beta}$-D-ribofuranoside;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Mukherjee, P., T. J. Mulrooney, J. Marsh, D. Blair, T. C. Chiles, and T. N. Seyfried. 2008. Differential effects of energy stress on AMPK phosphorylation and apoptosis in experimental brain tumor and normal brain. Mol. Cancer 7, 37-51   DOI   ScienceOn
2 Shimomura, I., R. E. Hammer, J. A. Richardson, S. Ikemoto, Y. Bashmakor, J. L. Goldstein, and M. S. Brown. 1998. Insulin resistance and diabetes mellitus in transgenic mice expressing nuclear SREBP-1c in adipose tissue: model for congenital generalized lipodystrophy. Genes Dev. 12, 3182-3194   DOI   ScienceOn
3 Song, X. M., M. Fiedler, D. Galuska, J. W. Ryder, M. Fernstrom, A. V. Chibalin, H. Wallberg-Henriksson, and J. R. Zierath. 2002. 5-Amino-imidazole-4-carboxamide ribonucleoside treatment improves glucose homeostasis in insulin-resistant diabetic (ob/ob) mice. Diabetologia. 45, 56-65   DOI   ScienceOn
4 Sorisky, A. 1999. From pre-adipocyte to adipocyte: differentiation-directed signals of insulin from the cell surface to the nucleus. Crit. Rev. Clin. Lab. Sci. 36, 1-34   DOI   ScienceOn
5 MacDougald, O. A. and S. Mandrup. 2002. Adipogenesis: forces that tip the scales. Trends. Endocrinol. Metab. 13, 5-11   DOI   ScienceOn
6 Meisse, D., M. Van de Casteele, C. Beauloye, I. Hainault, B. A. Kefas, M. H. Rider, F. Foufelle, and L. Hue. 2002. Sustained activation of AMP-activated protein kinase induces c-Jun N-terminal kinase activation and apoptosis in liver cells. FEBS. Lett. 526, 38-42   DOI   ScienceOn
7 Horman, S., G. Browne, U. Krause, J. Patel, D. Vertommen, L. Bertrand, A. Lavoinne, L. Hue, C. Proud, and M. Rider. 2002. Activation of AMP-activated protein kinase leads to the phosphorylation of elongation factor 2 and an inhibition of protein synthesis. Curr. Biol. 12, 1419-1423   DOI   ScienceOn
8 Huypens, P., E. Quartier, D. Pipeleers, and M. Van de Casteele. 2005. Metformin reduces adiponectin protein expression and release in 3T3-L1 adipocytes involving activation of AMP activated protein kinase. Eur. J. Pharmacol. 518, 90-95   DOI   ScienceOn
9 Hwang, J. T., I. J. Park, J. I. Shin, Y. K. Lee, S. K. Lee, H. W. Baik, J. Ha, and O. J. Park. 2005. Genistein, EGCG, and capsaicin inhibit adipocyte differentiation process via activating AMP-activated protein kinase. Biochem. Biophys. Res. Commun. 338, 694-696   DOI   ScienceOn
10 Joens, R. G., D. R. Plas, S. Kubek, M. Buzzai, J. Mu, Y. Xu, M. J. Birnbaum, and C. B. Thompson. 2005. AMP-activated protein kinase induces a p-53 dependent metabolic checkpoint. Mol. Cell 18, 283-293   DOI   ScienceOn
11 Kemp, B. E., D. Stapleton, D. J. Campbell, Z. P. Chen, S. Murthy, M. Walter, A. Gupta, J. J. Adams, F. Katsis, B. van Denderen, I. G. Jennings, T. Iseli, B. J. Michell, and L. A. Witters. 2003. AMP-activated protein kinase, super metabolic regulator. Biochem. Soc. Trans. 31, 162-168   DOI   ScienceOn
12 Kola, B. 2008. Role of AMP-activated protein kinase in the control of appetite. J. Neuroendocrinol. 20, 942-951   DOI   ScienceOn
13 Kola, B., A. B. Grossman, and M. Korbonits. 2008. The role of AMP-activated protein kinase in obesity. Front. Horm. Res. 36, 198-211
14 Kubota, N., W. Yano, T. Kubota, T. Yamauchi, S. Itoh, H. Kumagai, H. Kozono, I. Takamoto, S. Okamoto, T. Shiuchi, R. Suzuki, H. Satoh, A. Tsuchida, M. Moroi, K. Sugi, T. Noda, H. Ebinuma, Y. Ueta, T. Kondo, E. Araki, O. Ezaki, R. Nagai, K. Tobe, Y. Terauchi, K. Ueki, Y. Minokoshi, and T. Kadowaki. 2007. Adiponectin stimulates AMP-activated protein kinase in the hypothalamus and increases food intake. Cell Metab. 6, 55-68   DOI   ScienceOn
15 Browne, G. J., S. G. Finn, and C. G. Proud. 2004. Stimulation of the AMP-activated protein kinase leads to activation of eukaryotic elongation factor 2 kinase and to its phosphorylation at a novel site, serine 398. J. Biol. Chem. 279, 12220-12231   DOI   ScienceOn
16 Cherukuri, D. P. and M. A. Nelson. 2008. Role of reactive oxygen species (ROS) and JNKs in selenite-induced apoptosis in HepG2 cells. Cancer. Biol. Ther. 7, 689-696   DOI   ScienceOn
17 Dagon, Y., Y. Avraham, and E. M. Berry. 2005. AMPK activation regulates apoptosis, adipogenesis, and lipolysis by eIF2alpha in adipocytes. Biochem. Biophys. Res. Commun. 340, 43-47   DOI   ScienceOn
18 Daval, M., F. Foufelle, and P. Ferre. 2006. Functions of AMP-activated protein kinase in adipose tissue. J. Physiol. 574, 55-62   DOI   ScienceOn
19 Erbayraktar, Z., O. Yilmaz, A. T. Artmann, R. Cehreli, and C. Coker. 2007. Effects of selenium supplementation on antioxidant defense and glucose homeostasis in experimental diabetes mellitus. Biol. Trace. Elem. Res. 118, 217-226   DOI   ScienceOn
20 Gao, S., K. P. Kinzig, S. Aja, K. A. Scott, W. Keung, S. Kelly, K. Chohnan, S. Strynadka, W. W. Smith, K. L. Tamashiro, E. E. Ladenheim, G. V. Tu, Y. Ronnett, M. J. Birnbaum, G. D. Lopaschuk, and T. H. Moran. 2007. Leptin activates hypothalamic acetyl-CoA carboxylase to inhibit food intake. Proc. Natl. Acad. Aci. USA 104, 17358-17363   DOI   ScienceOn
21 Gray, S. L. and A. J. Vidal-Puig 2007. Adipose tissue expandability in the maintenance of metabolic homeostasis. Nutr. Rev. 65, 7-12   DOI   ScienceOn
22 Hardie, D. G., D. Carling, and M. Carlson 1998. The AMPactivated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu. Rev. Biochem. 67, 821-855   DOI   ScienceOn
23 Bays, H. E., J. M. Gonzalez-Campoy, G. A. Bray, A. E. Kitabchi, D. A. Bergman, A. B. Schorr, H. W. Rodbard, and R. R. Henry. 2008. Pathogenic potential of adipose tissue and metabolic consequences of adipocyte hypertrophy and increased visceral adiposity. Expert. Rev. Cardiovasc. Ther. 6, 343-368   DOI   ScienceOn
24 Block, K. I., A. C. Koch, M. N. Mead, P. K. Tothy, R. A. Newman, and C. Gyllenhaal. 2008. Impact of antioxidant supplementation on chemotherapeutic toxicity: a systematic review of the evidence from randomized controlled trials. Int. J. Cancer. 123, 1227-1239   DOI   ScienceOn