DOI QR코드

DOI QR Code

Effects of Panicum miliaceum L. extract on adipogenic transcription factors and fatty acid accumulation in 3T3-L1 adipocytes

  • Park, Mi-Young (Functional Food & Nutrition Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Seo, Dong-Won (Food Analysis Center, Korea Food Research Institute) ;
  • Lee, Jin-Young (Functional Food & Nutrition Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Sung, Mi-Kyung (Department of Home Economics Education, Kongju National University) ;
  • Lee, Young-Min (Functional Food & Nutrition Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Jang, Hwan-Hee (Functional Food & Nutrition Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Choi, Hae-Yeon (Department of Home Economics Education, Kongju National University) ;
  • Kim, Jae-Hyn (Functional Food & Nutrition Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Park, Dong-Sik (Functional Food & Nutrition Division, National Academy of Agricultural Science, Rural Development Administration)
  • Received : 2010.10.19
  • Accepted : 2011.05.20
  • Published : 2011.06.30

Abstract

The dietary intake of whole grains is known to reduce the incidence of chronic diseases such as obesity, diabetes, cardiovascular disease, and cancer. To investigate whether there are anti-adipogenic activities in various Korean cereals, we assessed water extracts of nine cereals. The results showed that treatment of 3T3-L1 adipocytes with Sorghum bicolor L. Moench, Setaria italica Beauvois, or Panicum miliaceum L. extract significantly inhibited adipocyte differentiation, as determined by measuring oil red-O staining, triglyceride accumulation, and glycerol 3-phosphate dehydrogenase activity. Among the nine cereals, P. miliaceum L. showed the highest anti-adipogenic activity. The effects of P. miliaceum L. on mRNA expression of peroxisome proliferator-activated receptor-${\gamma}$, sterol regulatory element-binding protein 1, and the CCAAT/enhancer binding protein-${\alpha}$ were evaluated revealing that the extract significantly decreased the expression of these genes in a dose-dependent manner. Moreover, P. miliaceum L. extract changed the ratio of monounsaturated fatty acids to saturated fatty acids in adipocytes, which is related to biological activity and cell characteristics. These results suggest that some cereals efficiently suppress adipogenesis in 3T3-L1 adipocytes. In particular, the effect of P. miliaceum L. on adipocyte differentiation is associated with the downregulation of adipogenic genes and fatty acid accumulation in adipocytes.

Keywords

References

  1. Barsh GS, Farooqi IS, O'Rahilly S. Genetics of body-weight regulation. Nature 2000;404:644-51. https://doi.org/10.1038/35007519
  2. Dugee O, Khor GL, Lye MS, Luvsannyam L, Janchiv O, Jamyan B, Esa N. Association of major dietary patterns with obesity risk among Mongolian men and women. Asia Pac J Clin Nutr 2009;18:433-40.
  3. Misra A, Rastogi K, Joshi SR. Whole grains and health: perspective for Asian Indians. J Assoc Physicians India 2009;57:155-62.
  4. Williams PG, Grafenauer SJ, O'Shea JE. Cereal grains, legumes, and weight management: a comprehensive review of the scientific evidence. Nutr Rev 2008;66:171-82. https://doi.org/10.1111/j.1753-4887.2008.00022.x
  5. Cho EJ, Rahman MA, Kim SW, Baek YM, Hwang HJ, Oh JY, Hwang HS, Lee SH, Yun JW. Chitosan oligosaccharides inhibit adipogenesis in 3T3-L1 adipocytes. J Microbiol Biotechnol 2008;18:80-7.
  6. Rosen ED, MacDougald OA. Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol 2006;7:885-96. https://doi.org/10.1038/nrm2066
  7. van Dijk SJ, Feskens EJ, Bos MB, Hoelen DW, Heijligenberg R, Bromhaar MG, de Groot LC, de Vries JH, Muller M, Afman LA. A saturated fatty acid-rich diet induces an obesity-linked proinflammatory gene expression profile in adipose tissue of subjects at risk of metabolic syndrome. Am J Clin Nutr 2009;90:1656-64. https://doi.org/10.3945/ajcn.2009.27792
  8. Phillips CM, Goumidi L, Bertrais S, Field MR, Peloso GM, Shen J, McManus R, Hercberg S, Lairon D, Planells R, Roche HM. Dietary saturated fat modulates the association between STAT3 polymorphisms and abdominal obesity in adults. J Nutr 2009;139:2011-7. https://doi.org/10.3945/jn.109.110635
  9. Bos MB, de Vries JH, Feskens EJ, van Dijk SJ, Hoelen DW, Siebelink E, Heijligenberg R, de Groot LC. Effect of a high monounsaturated fatty acids diet and a Mediterranean diet on serum lipids and insulin sensitivity in adults with mild abdominal obesity. Nutr Metab Cardiovasc Dis 2010;20:591-8. https://doi.org/10.1016/j.numecd.2009.05.008
  10. Lai CQ, Parnell LD, Arnett DK, Garcia-Bailo B, Tsai MY, Kabagambe EK, Straka RJ, Province MA, An P, Borecki IB, Tucker KL, Ordovas JM. WDTC1, the ortholog of Drosophila adipose gene, associates with human obesity, modulated by MUFA intake. Obesity (Silver Spring) 2009;17:593-600. https://doi.org/10.1038/oby.2008.561
  11. Choi BH, Kim YH, Ahn IS, Ha JH, Byun JM, Do MS. The inhibition of inflammatory molecule expression on 3T3-L1 adipocytes by berberine is not mediated by leptin signaling. Nutr Res Pract 2009;3:84-8. https://doi.org/10.4162/nrp.2009.3.2.84
  12. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001;25:402-8. https://doi.org/10.1006/meth.2001.1262
  13. He ML, Hnin TM, Kuwayama H, Mir PS, Okine EK, Hidari H. Effect of conjugated linoleic acid type, treatment period, and dosage on differentiation of 3T3 cells. Lipids 2006;41:937-49. https://doi.org/10.1007/s11745-006-5047-0
  14. Kramer JK, Fellner V, Dugan ME, Sauer FD, Mossoba MM, Yurawecz MP. Evaluating acid and base catalysts in the methylation of milk and rumen fatty acids with special emphasis on conjugated dienes and total trans fatty acids. Lipids 1997;32:1219-28. https://doi.org/10.1007/s11745-997-0156-3
  15. Kozak LP, Jensen JT. Genetic and developmental control of multiple forms of L-glycerol 3-phosphate dehydrogenase. J Biol Chem 1974;249:7775-81.
  16. Gregoire FM, Smas CM, Sul HS. Understanding adipocyte differentiation. Physiol Rev 1998;78:783-809. https://doi.org/10.1152/physrev.1998.78.3.783
  17. Rosen ED, Spiegelman BM. Molecular regulation of adipogenesis. Annu Rev Cell Dev Biol 2000;16:145-71. https://doi.org/10.1146/annurev.cellbio.16.1.145
  18. Ross SE, Hemati N, Longo KA, Bennett CN, Lucas PC, Erickson RL, MacDougald OA. Inhibition of adipogenesis by Wnt signaling. Science 2000;289:950-3. https://doi.org/10.1126/science.289.5481.950
  19. Tseng YH, Kriauciunas KM, Kokkotou E, Kahn CR. Differential roles of insulin receptor substrates in brown adipocyte differentiation. Mol Cell Biol 2004;24:1918-29. https://doi.org/10.1128/MCB.24.5.1918-1929.2004
  20. Oishi Y, Manabe I, Tobe K, Tsushima K, Shindo T, Fujiu K, Nishimura G, Maemura K, Yamauchi T, Kubota N, Suzuki R, Kitamura T, Akira S, Kadowaki T, Nagai R. Kruppel-like transcription factor KLF5 is a key regulator of adipocyte differentiation. Cell Metab 2005;1:27-39. https://doi.org/10.1016/j.cmet.2004.11.005
  21. Kim JB, Wright HM, Wright M, Spiegelman BM. ADD1/SREBP1 activates $PPAR\gamma$ through the production of endogenous ligand. Proc Natl Acad Sci U S A 1998;95:4333-7. https://doi.org/10.1073/pnas.95.8.4333
  22. Siener R, Alteheld B, Terjung B, Junghans B, Bitterlich N, Stehle P, Metzner C. Change in the fatty acid pattern of erythrocyte membrane phospholipids after oral supplementation of specific fatty acids in patients with gastrointestinal diseases. Eur J Clin Nutr 2010;64:410-8. https://doi.org/10.1038/ejcn.2009.151
  23. Koenitzer JR, Freeman BA. Redox signaling in inflammation: interactions of endogenous electrophiles and mitochondria in cardiovascular disease. Ann N Y Acad Sci 2010;1203:45-52. https://doi.org/10.1111/j.1749-6632.2010.05559.x
  24. Sogaard R, Werge TM, Bertelsen C, Lundbye C, Madsen KL, Nielsen CH, Lundbaek JA. $GABA_A$ receptor function is regulated by lipid bilayer elasticity. Biochemistry 2006;45:13118-29. https://doi.org/10.1021/bi060734+
  25. Collins JM, Neville MJ, Hoppa MB, Frayn KN. De novo lipogenesis and stearoyl-CoA desaturase are coordinately regulated in the human adipocyte and protect against palmitate-induced cell injury. J Biol Chem 2010;285:6044-52. https://doi.org/10.1074/jbc.M109.053280
  26. Scaglia N, Igal RA. Inhibition of Stearoyl-CoA Desaturase 1 expression in human lung adenocarcinoma cells impairs tumorigenesis. Int J Oncol 2008;33:839-50.
  27. Jaureguiberry MS, Tricerri MA, Sanchez SA, Garda HA, Finarelli GS, Gonzalez MC, Rimoldi OJ. Membrane organization and regulation of cellular cholesterol homeostasis. J Membr Biol 2010;234:183-94. https://doi.org/10.1007/s00232-010-9245-6
  28. He ML, Wang Y, You JS, Mir PS, McAllister TA. Effect of a seaweed extract on fatty acid accumulation and glycerol-3-phosphate dehydrogenase activity in 3T3-L1 adipocytes. Lipids 2009;44:125-32. https://doi.org/10.1007/s11745-008-3256-4
  29. Yeop Han C, Kargi AY, Omer M, Chan CK, Wabitsch M, O'Brien KD, Wight TN, Chait A. Differential effect of saturated and unsaturated free fatty acids on the generation of monocyte adhesion and chemotactic factors by adipocytes: dissociation of adipocyte hypertrophy from inflammation. Diabetes 2010;59:386-96. https://doi.org/10.2337/db09-0925

Cited by

  1. mice vol.5, pp.6, 2011, https://doi.org/10.4162/nrp.2011.5.6.511
  2. Effect of Hog Millet Supplementation on Hepatic Steatosis and Insulin Resistance in Mice Fed a High-fat Diet vol.41, pp.4, 2012, https://doi.org/10.3746/jkfn.2012.41.4.501
  3. Effect of Gambisan on the Inhibition of Adipogenesis in 3T3-L1 Adipocytes vol.2013, pp.1741-4288, 2013, https://doi.org/10.1155/2013/789067
  4. Germinated Brown Rice Extract Inhibits Adipogenesis Through the Down-regulation of Adipogenic Genes in 3T3-L1 Adipocytes vol.68, pp.3, 2013, https://doi.org/10.1007/s11130-013-0366-9
  5. seeds pickled with brown rice vinegar in mice fed a high-fat diet vol.7, pp.6, 2013, https://doi.org/10.4162/nrp.2013.7.6.453
  6. Anti-aging Potential of Extracts Prepared from Fruits and Medicinal Herbs Cultivated in the Gyeongnam Area of Korea vol.19, pp.3, 2014, https://doi.org/10.3746/pnf.2014.19.3.178
  7. Pro-apoptotic and Anti-adipogenic Effects of Proso Millet (Panicum miliaceum) Grains on 3T3-L1 Preadipocytes vol.24, pp.5, 2014, https://doi.org/10.5352/JLS.2014.24.5.505
  8. Anti-adipogenic activity of blue mussel (Mytilus edulis) extract by regulation of 3T3-L1 adipogenesis through Wnt/β-catenin signaling pathway vol.24, pp.1, 2015, https://doi.org/10.1007/s10068-015-0042-y
  9. Beneficial role and function of fisetin in skin health via regulation of the CCN2/TGF-β signaling pathway vol.25, pp.S1, 2016, https://doi.org/10.1007/s10068-016-0110-y
  10. Trans10,cis15 18:2 Isolated from Beef Fat Does Not Have the Same Anti-Adipogenic Properties as Trans10,cis12–18:2 in 3T3-L1 Adipocytes vol.51, pp.11, 2016, https://doi.org/10.1007/s11745-016-4192-3
  11. Natural Variation and Genome-Wide Association Study of Antioxidants in a Diverse Sorghum Collection vol.94, pp.2, 2017, https://doi.org/10.1094/CCHEM-03-16-0075-R
  12. Kinetics Investigation on Mushroom Tyrosinase Inhibition of Proso Millet vol.2018, pp.2090-9071, 2018, https://doi.org/10.1155/2018/2387926
  13. 삼백초 추출물의 3T3-L1 세포에 대한 지방축적 억제효과 vol.27, pp.6, 2011, https://doi.org/10.7841/ksbbj.2012.27.6.381
  14. 조, 기장, 수수 추출물의 항산화 효과 및 전립선 암세포주 증식 억제 효능 vol.23, pp.7, 2011, https://doi.org/10.11002/kjfp.2016.23.7.1033