• Title/Summary/Keyword: 3D Profilometry

Search Result 40, Processing Time 0.031 seconds

3-D Measurement of LED Packages Using Phase Measurement Profilometry (위상측정법을 이용한 LED Package의 3차원 형상 측정)

  • Koo, Ja-Myoung;Cho, Tai-Hoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.1
    • /
    • pp.17-22
    • /
    • 2011
  • LEDs(Light Emitting Diodes) are becoming widely used and increasingly in demand. Quality inspection of the LEDs has become more important. Two-dimensional inspection systems are limited in inspection capability, so threedimensional(3-D) inspection systems are needed. In this paper, a cost-effective and simple 3-D measurement system of LED packages using phase measuring profilometry(PMP) is proposed. The proposed system uses a pico projector to project sinusoidal fringe patterns and to shift phases instead of piezocrystal. It was evaluated using extremely accurate gauge blocks, yielding excellent repeatability of about 12 um(3-sigma). 3-D measurements of various LED packages were performed to demonstrate the applicability and efficiency of the proposed system.

Phase Error Reduction for Multi-frequency Fringe Projection Profilometry Using Adaptive Compensation

  • Cho, Choon Sik;Han, Junghee
    • Current Optics and Photonics
    • /
    • v.2 no.4
    • /
    • pp.332-339
    • /
    • 2018
  • A new multi-frequency fringe projection method is proposed to reduce the nonlinear phase error in 3-D shape measurements using an adaptive compensation method. The phase error of the traditional fringe projection technique originates from various sources such as lens distortion, the nonlinear imaging system and a nonsinusoidal fringe pattern that can be very difficult to model. Inherent possibility of phase error appearing hinders one from accurate 3-D reconstruction. In this work, an adaptive compensation algorithm is introduced to reduce adaptively the phase error resulting from the fringe projection profilometry. Three different frequencies are used for generating the gratings of projector and conveyed to the four-step phase-shifting procedure to measure the objects of very discontinuous surfaces. The 3-D shape results show that this proposed technique succeeds in reconstructing the 3-D shape of any type of objects.

A study on the nonlinear error correction of the phase measuring profilometry (PMP 형상 측정법에서 비선형 오차보정에 관한 연구)

  • 황용선;강영준;박낙규;백성훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.513-516
    • /
    • 2003
  • Phase Measuring Profilometry(PMP) has been developed as one of three dimensional 3-D shape measuring methods. The 3-D profile of an object was calculated from the phase data obtained by the sinusoidal patterns projected on the object. However, in some cases the approximation includes considerable errors. In this paper, the effect on the errors caused by the optical geometry and the calibration procedure in PMP technique are discussed. The errors which occured in the process of calculating the 3-D profile from the phase distribution are investigated theoritically and experimentally.

  • PDF

A 3D Measurement System for the Leads of Semiconductor Chips Using Phase Measuring Profilometry (Phase Measuring Profilometry를 이용한 반도체 칩의 Lead 높이 측정 방법)

  • Kim, Young-Doo;Cho, Tai-Hoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.11a
    • /
    • pp.223-226
    • /
    • 2011
  • 반도체 공정에서 부품의 결함을 찾는 것은 완제품의 품질 개선을 위해 중요하다. 현재까지 많은 비전 알고리즘들이 부품의 결함을 찾기 위해 적용되고 있다. 그러나 이런 알고리즘 대부분은 2D 방식의 검사 방식에 머물고 있다. 그러나 이런 2D방식의 검사 방법은 반도체 칩의 Lead나 Pad 그리고 Solder Joint와 같이 3D 정보에 의해 불량 유무를 판결해야 하는 곳에 적용하기 어렵다. 이에 본 논문에서는 PMP(Phase Measuring Profilometry)방법에 의해 반도체 칩의 Lead부분을 검사하기 위한 시스템 구성과 방법을 제안한다.

A 3D measurement system based on a double frequency method using Fourier transform profilometry (FTP를 이용한 이중 파장법에 의한 3차원 형상 측정)

  • Koo, Ja-myoung;Cho, Tai-hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.6
    • /
    • pp.1485-1492
    • /
    • 2015
  • This paper proposes a double frequency method using FTP(Fourier Transform Profilometry) in fringe projection techniques for 3D measurement systems. In fringe projection techniques, fringe pattern images are projected and captured, and then object is measured by analysing phase. PMP(Phase Measuring Profilometry) for analysing phase provides high-resolution and is robust to object's reflection and background intensities. However, the measurement range is narrow due to 2π ambiguity. In order to overcome this problem, a double frequency method is often used. This method can widen the range of measurement while maintaining the high-resolution, but the measurement time is taken about twice due to grab 2 times number of images. The proposed double frequency method using FTP requires an additional image for resolving 2π ambiguity. The proposed method effectively reduces the measurement time while maintaining the same accuracy.

Acceleration of Phase Measuring Profilometry using GPU (GPU를 이용한 위상 측정법의 가속화)

  • Kim, Ho-Joong;Cho, Tai-Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.12
    • /
    • pp.2285-2290
    • /
    • 2017
  • Automation systems are evolving in many areas of industry in recent years. At the same time, the necessity of the height inspection of the object by the 3D measurement is gradually increasing. Among the various 3D measurement methods, this paper discusses phase measuring profilometry(PMP). The PMP is a method of obtaining the height of an object using the phase value of the fringe pattern. Since the PMP is an algorithm requiring a large amount of computation, a method for efficiently solving the problem is needed. In this paper, we propose to use CUDA from NVIDIA to solve this problem. We also propose using pinned memory and streams provided by CUDA. This can greatly improve the measurement speed while maintaining accuracy. Finally, we demonstrate the performance of the proposed method through experiments.

A Study on the Phase Measuring Profilometry with Parallel-optical-axes (평행 광축에서의 위상측정 형상측정법에 관한 연구)

  • 정경민;박윤창;박경근
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.6
    • /
    • pp.210-217
    • /
    • 2000
  • Noncontact measuring methodology of 3-dimensional profile using CCD camera are very attractive because of it's high measuring speed and it's high sensitivity. Especially when projecting a grid pattern over the object, the captured image have 3 dimensional information of the object. Projection moire extract 3-D information with another grid pattern in front of CCD camera. However phase measuring profilometry(PMP) obtain similar results without additional grid pattern. In this paper, the projection moire are compared with the PMP mathematically, and it is shown that PMP can generate moire image with simple mathematical computations. Experimental works are also carried out showing the same results. It is shown that using a single gird pattern, moire image can be obtained directly without any mathematical operation when some conditions are satisfied.

  • PDF

A New Profilometry System for Precision Measurement of 3D Shape Using the Directional Magnification Control of a Laser Light Stripe (선모양을 한 레이저빔의 방향성 배율 확대를 이용한 정밀 형상측정 시스템)

  • Park, Seung-Kyu;Baik, Sung-Hoon;KIM, Cheol-Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.5
    • /
    • pp.60-65
    • /
    • 1997
  • This paper proposes a profilometry system for precise surface contouring of 3D objects using a direc- tionally magnified image of a laser light stripe. The resolution of this system can be improved several times comparad with that of conventional systems without loss of spatial resolution and depth of measurement. A pair of cylindrical lens(a convex lens and a concave lens) are used for a directionally magnified image of a laser light stripe maintaining the same focal plane. Also, image processing procedures for image reconstruc- tions are described.

  • PDF

Profilometry based on Structured Illumination with Hypercentric Optics (하이퍼센트릭 광학계를 이용한 구조 조명 형상 측정 방법)

  • Kim, Sungmin;Cho, Minguk;Lee, Maengjin;Hahn, Joonku
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.12
    • /
    • pp.1089-1093
    • /
    • 2013
  • Depth extraction using the structured illumination method is popularly applied since it has the benefit of measuring the object without contact. With multiple spatial frequencies and phase-shifting techniques, it is possible to extract the depth of objects with large discontinuity. For applications such as 3D (Three Dimensional) displays, 3D information of the object is required and is useful if corresponding to each view of the display. For this purpose, hypercentric optics is appropriate to measure the depth information of an object with a large field of view that is applicable for a 3D display. By experiment, we present the feasibility for phase-shifting profilometry using hypercentric optics to obtain the depth information of an object with the field of view appropriate for a 3D display.

An Efficient 3D Measurement Method that Improves the Fringe Projection Profilometry (Fringe Projection Profilometry를 개선한 효율적인 3D 측정 기법)

  • Kim, Ho-Joong;Cho, Tai-Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.10
    • /
    • pp.1973-1979
    • /
    • 2016
  • As technologies evolve, diverse 3D measurement techniques using cameras and pattern projectors have been developed continuously. In 3D measurement, high accuracy, fast speed, and easy implementation are very important factors. Recently, 3D measurement using multi-frequency fringe patterns for absolute phase computation has been widely used in the fringe projection profilometry. This paper proposes an improved method to compute the object's absolute phase using the reference plane's absolute phase and phase difference between the object and the reference plane. This method finds the object's absolute phase by adding the difference between the reference plane's wrapped phase and the object's wrapped phase to the reference plane's absolute phase already obtained in the calibration stage. Through this method, there is no need to obtain multi-frequency fringe patterns about new object for the absolute phase computation. Instead, we only need the object's phase difference relative to the reference planes's phase in the measurement stage.