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I. INTRODUCTION

Noncontact 3-D shape measurement techniques have been 

extending their applications to various industrial fields such 

as medical, manufacturing and biometric areas. A large 

number of noncontact 3-D shape measurement techniques 

developed until now show their advantages and drawbacks 

as listed in [1-8]. Among them fringe projection profilo-

metry (FPP) has been of prime interest because it provides 

fast operation and high resolution by using a relatively 

simple configuration composed of a projection system and an 

imaging system. The FPP technique can be classified into 

Fourier transform profilometry (FTP) and phase measuring 

profilometry (PMP) where both methods obtain the phase 

of objects and then provide a 3-D shape reconstruction. 

The FTP method shows a faster response but a lower 

resolution compared with the PMP method. PMP can thus 

be employed for the manufacturing inspection systems due 

to high measurement resolution, but the measurement range 

is restrained due to the chronic 2π ambiguity [8]. In 

addition, phase error occurs from the nonlinear characteristic 

of the measurement system configuration [9]. To resolve 

this issue, multi-frequency PMP is introduced to reduce the 

phase error by compensating the nonlinear characteristic of 

projection and imaging systems, and by employing the 

adaptive compensation based on the additive combination 

of sinusoidal functions [10].

Much effort for reducing the phase error in the middle 

of 3-D shape measurements has been expended specifically 

concentrating on the procedure of phase unwrapping. A 

mathematical model with a phase-coding method is presented 

for accurate phase map retrieval, but this method still 

illustrates unstable phase error reduction [11]. A phase 

measurement technique using multiple perspectives is 

shown but this method requires a long computation time 

and a complex phase map retrieval process [12]. The 

coded phase pattern has also been applied but this method 

displays a good 3-D shape measurement only for very 
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smooth-surface objects [13]. A stair phase encoding method 

has been proposed showing better 3-D shape performance, 

but this method cannot be utilized for very discontinuous- 

surface objects [14, 15].

In this work, a PMP method is proposed devising an 

adaptive compensation technique for reducing the phase 

error in the process of phase retrieval for 3-D shape 

measurement. Since this technique capitalizes on a feedback 

network, the phase error is reduced repeatedly and a 

decision for whether the feedback should be continued or 

not can be made by the designers. This can be employed 

for very discontinuous- and rough-surface objects. 

II. MULTI-FREQUENCY FRINGE PROJECTION 

PROFILOMETRY 

Figure 1 shows the general environment of the fringe 

projection method. Using the projector, the fringe pattern 

is projected onto the object and the deformed fringe pattern 

is acquired through the camera. PMP is a method of 

obtaining the phase of an object using N sinusoidal fringe 

patterns with constant phase difference. The deformed 

fringe patterns caused by the fringe pattern projected onto 

the object to be measured through the projector can be 

obtained through the camera. Eq. (1) represents the modified 

fringe pattern.
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where ( , )a x y  is the background intensity, ( , )b x y  is the 

fringe modulation, and ( , )x yφ  represents the phase distri-

bution at each point of the object. In this case, 
n
I  depends 

on the number of fringe patterns used. If four fringe 

patterns are used, a modified fringe pattern as shown in 

Eq. (2) can be obtained.
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The four modified fringe pattern formulas derived in 

Eq. (2) can be rewritten as in Eq. (3) using trigonometric 

formulas.
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Manipulating the four modified fringe patterns in Eq. (3), 

the phase can be calculated using Eq. (4), leading to Eq. (5).
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Therefore, the phase of the object can be computed 

using the light intensity of each pixel of the four deformed 

fringe patterns obtained by photographing the fringe pattern 

of the deformed fringe pattern projected by the projector 

through the object to be measured. The actual height of 

the object should be calculated from the phase obtained by 

Eq. (5). The height of the object is calculated using the 

parameters described in Fig. 2. 

Capitalizing the parameters shown in Fig. 2, we can 

obtain the height of the object. In this work, a 3D shape 

reconstruction system is realized by employing the PMP 

method that shows a relatively high resolution. In spite 

of this advantage, there are still problematic factors to 

FIG. 1. The general environment for the fringe projection 

method. FIG. 2. Conversion from phase data to height data.
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overcome. The first problem is that there is a limit to the 

measurement range due to ambiguity. We therefore propose 

a method using a multi-frequency fringe pattern to solve 

this problem. Secondly, we propose a method to correct 

the phase error by using the sum of sinusoidal functions. 

We use the arctangent function as shown in Eq. (5) to 

obtain the phase by deciding the light intensity of the 

fringe pattern acquired through the camera. Due to the 

nature of the arctangent function, the calculation result will 

have a value in the range of ~
2 2

π π

− . As a result, the 

height cannot fall within one wavelength of the fringe 

pattern, which is rapidly changing. As shown in Fig. 3, the 

positions C1, C2, and C3 of the objects S1, S2, and S3 

having different heights are equal to each other in phase 

difference from the floor in the camera position. Therefore, 

the phase difference obtained by using the light intensity 

of the deformed fringe pattern is the same in all objects 

S1, S2, and S3 having different heights. In the fringe 

projection method using a single frequency, if the height 

of the object is not within the wavelength range of the 

sinusoidal fringe pattern, the problem caused by such 2π 

ambiguity cannot be resolved. Therefore, we propose a 

multi-frequency method to increase the measurement range.

The 2π ambiguity described here is the biggest problem 

in the process of 3D shaping with PMP. This is funda-

mentally very difficult to resolve with a single frequency 

fringe pattern. Therefore, the limitation of the measurement 

range which cannot be resolved by the method using the 

single frequency is settled by using the multi-frequency 

fringe pattern [15]. For a large frequency fringe pattern, 

it is possible to measure a precise height, but there is a 

disadvantage that the measurement range is small because 

the wavelength of the fringe pattern is short. On the other 

hand, the fringe pattern with a small frequency has the 

disadvantage that the measurement accuracy is low but the 

measurement range is large because of the long wavelength. 

Therefore, using a two-frequency fringe pattern, it is possible 

to maintain measurement accuracy and to widen the height 

range. The combination of these two advantages can resolve 

the 2π ambiguity.

In Fig. 4, the process of PMP using multiple frequencies 

is explained. For each fringe pattern with different frequencies 

f1 and f2 (f1 > f2), we can obtain the phases ϕ1 and ϕ2 at 

a single frequency using Eq. (5). Overlapping the calculated 

phases of f1 and f2 (f1 > f2) leads to the frequency difference 

of the fringe pattern as shown in Fig. 4. From the results 

in Fig. 4, we can obtain the phase using fringe patterns of 

f1 and f2 using Eq. (6).
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The range of measurement for ϕ12 at one wavelength is 

increased when compared with the phase using a single 

frequency fringe pattern from ϕ1 and ϕ2. ϕ23 obtainable 

from ϕ2 and ϕ3 can also be capitalized and extended to 

wider range of phase, ϕ123, which is the difference of ϕ12 

FIG. 3. 2π ambiguity.

FIG. 4. The process of obtaining 1
φ  and 2

φ .

FIG. 5. The frequency difference between 1
φ  and 2

φ .
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and ϕ23, as illustrated in Fig. 5. The number of fringe 

patterns at different frequencies to be used can be 

determined by the measurement range. In the result shown 

in Fig. 5, it can be seen that the measurement range ϕ123 

of the object obtained using fringe patterns for the three 

different frequencies of f1, f2 and f3 ( f1 > f2 > f3) is 

increased when compared with ϕ12 and ϕ23 obtained using 

fringe patterns for the two frequency sets of f1 - f2, and 

f2 - f3, respectively ( f1 > f2 > f3).

The limitation of measurement range for object height 

due to the ambiguity of the single frequency PMP method 

can be resolved through the multi-frequency PMP described 

here. As the number of different fringe patterns increases, 

the measurement range of height increases, but it takes 

more time because the number of fringe patterns projected 

from the projector and the number of deformed fringe 

patterns acquired by the camera increases. In this work, 

three frequencies have been used.

III. MEASUREMENT RESULTS AND 

PHASE ERROR COMPENSATION 

For an ideal 3D shape reconstruction system, the 

generated fringe pattern should be projected through the 

projector, reflected on the object to be measured, and kept 

constant when acquired through the camera. However, the 

light intensity of the fringe pattern is affected by the 

nonlinearity of the projector and camera. Since the fringe 

pattern is projected in the form of light, phase error is 

generated when the phase is calculated due to the influence 

of surrounding light. This phenomenon is explained in 

Fig. 6 [15].
When the generated fringe pattern (Ii) is projected 

through the projector, the output (Ip) is given by Eq. (7) 

because of the nonlinear function f(·) of the projector. 

When the fringe pattern projected forms a deformation 

grating in the object to be measured, it reflects in the form 

of Eq. (8) due to the reflectivity ( , )r x y  of the object and 

ambient light of ( , )a x y . When the object is photographed 

by the camera to obtain the modified fringe pattern, the 

finally acquired fringe pattern image due to the nonlinearity 

coefficient α of the camera is expressed by Eq. (9).

( , ) ( )p

iI x y f I=  (7)

( , )[ ( , ) ( , )]o p
I r x y I x y a x y= +  (8)

( , ) [ ( , )]c oI x y I a x yα= +  (9)

The distortion of the final fringe pattern causes a phase 

error when calculating the phase using light intensity, 

yielding degradation of the accuracy of object height. This 

paper introduces how to correct the phase error caused by 

the nonlinear characteristics of projector and camera based 

on the fact that the intensity of light input from the 

camera takes originally a sinusoidal wave. Therefore, we 

can adaptively compensate the phase error using the curve 

fitting with sinusoidal waves.

Figure 7 shows the result of projecting the fringe pattern 

on a flat bottomed surface using the actual 3D shaping 

system and calculating the phase through the fringe pattern 

photographed by the camera. Assuming the ideal environ-

ment, the phase error in the real system can be confirmed 

when compared with the simulated phase. The cause of 

this phase error is the distortion of the fringe pattern due 

to nonlinearity of the projector, camera and the surrounding 

environment. Figure 8 shows the light intensity of the 

fringe pattern taken by a real camera. The fringe pattern 

read from the camera (
C

iI ) in Eq. (9) can be simply 

rewritten as in Eq. (10) [14],

FIG. 6. The procedure for fringe pattern image processing.

FIG. 7. Phase error in a real system.

FIG. 8. Light intensity of fringe pattern photographed with a 

real camera.
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[ ] sC

i i A
I r I I

γ
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where i
I  is generated fringe pattern which is input to the 

projector, A
I  is the intensity of the ambient light and r is 

the object reflectivity. The fringe pattern to determine the 

nonlinear exponent s
γ  cannot be used to determine the 

referred light intensity since the ideal environment cannot 

be assumed. Therefore, each monochromatic light with 

different light intensity is excited at the projector, and the 

projected monochromatic light is photographed by the 

camera and analyzed to determine the nonlinear exponent. 

The results of three monochromatic projections 1 2
,

i i
I I  and 

3i
I  are shown in Eqs. (11), (12), and (13).
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Assuming that object reflectivity and ambient light are 

maintained the same, the expression of eliminating the 

object reflectivity and the ambient light can be created as 

represented in Eq. (14). The nonlinear exponent can be 

determined for each pixel using Eq. (14).

[ ] [ ]

[ ] [ ]

1 2 1 2

2 3 2 3

s s

s s

C C

i i i i

C C

i i i i

I I I I

I I I I

γ γ

γ γ

⎡ ⎤ ⎡ ⎤− −⎣ ⎦ ⎣ ⎦ =
⎡ ⎤ ⎡ ⎤− −⎣ ⎦ ⎣ ⎦

 (14)

The ripple of light intensity remaining after hardware 

correction is also a main cause of phase error. As a result, 

the ripple in sinusoidal waveform creates phase error. In 

this work, the distorted fringe pattern is modeled by 

combining multiple sinusoidal functions as expressed in 

Eq. (15). In order to reduce the phase error, the light 

intensity of the fringe pattern input to the camera must 

maintain an ideal sinusoidal shape. The fringe pattern that 

is initially created is an ideal single-frequency sinusoidal 

shape, but the projected and photographed fringe pattern 

cannot maintain a single frequency and phase because the 

projector and camera are not in ideal condition. Therefore, 

the shape of the photographed fringe pattern, f(x), is 

modeled using a combination of a plurality of sine waves 

as shown in Eq. (15).
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Using the difference between the photographed fringe 

pattern and the modeling function as expressed in Eq. (16), 

we find a combination of multiple sinusoidal summations 

with a minimum phase error through the least squares 

approach.

2 2 2

0 0

[ ] ( ) ([ ] ( ))
m m

C

i i

i i

Error d I f x
= =

= = −∑ ∑  (16)

Figure 9 shows an adaptive compensation process using 

a sinusoidal sum. As the number of sine waves increases, 

the optimal modeling function can be found, but there is 

a disadvantage in the time requirement. Therefore, the 

FIG. 10. Compensation result for m = 2.

FIG. 9. Adaptive compensation process using sinusoidal sum.
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maximum number of sinusoidal combinations is set to 6 in 

this work. Figures 10~13 show the result of modeling the 

fringe pattern through the aforementioned adaptive compen-

sation process. As the number (m) of sinusoidal sum terms 

increases as shown in Figs. 10~13, the measured fringe 

pattern can be expressed more accurately using the modeling 

function of sine waves. Figure 13 illustrates closer modeling 

function compared with that of Fig. 10 as expected.

FIG. 11. Compensation result for m = 3.

FIG. 12. Compensation result for m = 4.

FIG. 13. Compensation result for m = 5.
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A gauge block with precise height as taken in Fig. 14 is 

photographed using three frequencies. As shown in Fig. 

14, the vertical and horizontal gauge blocks are maintained 

and the experiment is conducted. Phase error compensation 

proposed here is applied to this gauge block and analyzed. 

Now, we compare the results of 3D shaping after 

hardware and phase error compensations with those before 

phase error compensation. Figure 15 shows the 3D shape 

of the gauge block before the phase error compensation 

and Fig. 16 shows that after the phase error compensation. 

As shown in Fig. 16, the surface has become significantly 

smoother compared with that of Fig. 15 since the noisy 

surface has been corrected successfully using the phase 

error compensation. Therefore, 3D shaping with phase error 

compensation can be clearer than without it. Figure 17 

represents the results before and after phase error compen-

sation. Table 1 numerically shows the phase error before 

and after the phase error correction. In order to numerically 

evaluate the improvement after the phase error correction, 

phase error at each pixel is squared and the sums before 

FIG. 14. Gauge block used for 3-D shaping.

FIG. 15. 3D shaping of gauge block before phase error 

compensation.

FIG. 16. 3D shaping of gauge block after phase error 

compensation.

FIG. 17. Comparison of phase error before and after 

compensation.

TABLE 1. Phase errors before and after phase error 

compensation

Phase error before 

compensation

Phase error after 

compensation

Pixel Error (Error)2 Error (Error)2

  200 0.0103 0.000106 -0.0605 0.00366

  400 -0.1813 0.03287 0.0805 0.00648

  600 0.1812 0.032833 -0.0322 0.001037

  800 0.1132 0.012814 -0.0922 0.008501

1000 0.2132 0.045454 0.0626 0.003919

1200 0.2494 0.0622 -0.032 0.001024

1400 0.1683 0.028325 -0.058 0.003364

1600 -0.1811 0.032797 -0.0214 0.000458

1800 0.2078 0.043181 -0.0201 0.000404

2000 -0.011 0.000121 0.0387 0.001498

2200 0.1208 0.014593 0.015 0.000225

2400 0.1283 0.016461 -0.0227 0.000515

2600 0.3678 0.135277 0.372 0.138384

2800 0.0129 0.000166 -0.0362 0.00131

Sum 0.457199 Sum 0.170779
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and after compensation are compared. As a result, the 

phase error reduction rate after the phase error correction 

approaches 92.64%. Table 2 shows the results of measuring 

the height of a gauge block. Since the gauge block is 

manufactured with precise dimensions, it is a tool to measure 

height accuracy before and after phase error compensation. 

If the phase error is compensated, the height of the object 

can be measured more precisely. This is because the phase 

error is related to the depth of the object to be measured. 

The smaller the phase error, the smaller the amount of 

ripples present on the surface of the object, and thus the 

more accurately the height data can be measured.

IV. CONCLUSION

In this paper, we developed a 3D shape reconstruction 

system using a multi-frequency phase measuring profilo-

metry method with improved phase error using adaptive 

compensation. It is confirmed that the limitation of 

measurement range in the single frequency method is 

resolved by using multiple frequencies. In addition, the 

error reduction rate of 92.64% was obtained when modeling 

fringe pattern by combination of hardware correction and 

sinusoidal wave compared with that before phase error 

correction. It is confirmed that it is possible to measure 

more accurate height data by compensating the phase error 

associated with the depth problem of the object height 

data. This is proved by gauge block measurement of 

precise dimensions and it is suitable for use as inspection 

equipment in various fields of industry by showing the 3D 

shape of a complex object.
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