• 제목/요약/키워드: 3-D position

Search Result 2,275, Processing Time 0.028 seconds

A simple technique for repositioning of the mandible by a surgical guide prepared using a three-dimensional model after segmental mandibulectomy

  • Funayama, Akinori;Kojima, Taku;Yoshizawa, Michiko;Mikami, Toshihiko;Kanemaru, Shohei;Niimi, Kanae;Oda, Yohei;Kato, Yusuke;Kobayashi, Tadaharu
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.39
    • /
    • pp.16.1-16.6
    • /
    • 2017
  • Background: Mandibular reconstruction is performed after segmental mandibulectomy, and precise repositioning of the condylar head in the temporomandibular fossa is essential for maintaining preoperative occlusion. Methods: In cases without involvement of soft tissue around the mandibular bone, the autopolymer resin in a soft state is pressed against the lower border of the mandible and buccal and lingual sides of the 3D model on the excised side. After hardening, it is shaved with a carbide bar to make the proximal and distal parts parallel to the resected surface in order to determine the direction of mandibular resection. On the other hand, in cases that require resection of soft tissue around the mandible such as cases of a malignant tumor, right and left mandibular rami of the 3D model are connected with the autopolymer resin to keep the preoperative position between proximal and distal segments before surgical simulation. The device is made to fit the lower border of the anterior mandible and the posterior border of the mandibular ramus. The device has a U-shaped handle so that adaptation of the device will not interfere with the soft tissue to be removed and has holes to be fixed on the mandible with screws. Results: We successfully performed the planned accurate segmental mandibulectomy and the precise repositioning of the condylar head by the device. Conclusions: The present technique and device that we developed proved to be simple and useful for restoring the preoperative condylar head positioning in the temporomandibular fossa and the precise resection of the mandible.

The influence of the burden of nurse's work and health problems on presenteeism (간호사의 건강문제와 업무에 대한 부담감이 프리젠티즘에 미치는 영향)

  • Lee, Ji Eun;Lee, Eunjoo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.4
    • /
    • pp.769-781
    • /
    • 2017
  • The purpose of this study was to investigate the effects of nurses' perceived burden from work and health problems on the presentism of nurses. The study subjects were recruited from four general and tertiary hospitals in K province and D metropolitan city. A quarter of nurses had shoulder, back, and neck pain and average number of health problems was 3.62. The nurses' presenteeism score was $43.37{\pm}12.43$ points out of 100 points. There was a statistically significant relationship between nurses' perceived burden, numbers of health problems, and presenteeism. The numbers of health problems and perceived burden of nurses had significant effects on presenteeism of nurses while controlling demographic factors such as length of work experience, job position, types of hospital, and gender. These results suggested that the less burden from work and the lower number health problems could result in the lower level of presenteeism of nurses. Therefore, it is necessary to develop diverse strategies to reduce the burden of nurses and health problems at both individual and organizational levels as a way to increase productivity of hospital.

Evaluation of Shear Capacity on PC Girder-PC Beam Joint (PC 큰 보-PC 작은 보 접합부의 전단성능 평가)

  • Moon, Jeong Ho;Oh, Young Hun;Lim, Jae Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.6
    • /
    • pp.166-174
    • /
    • 2011
  • The object of this study is to evaluate the structural shear capacity of the PC girder-PC beam joint. The dapped end of PC beam and the ledger of PC girder are usually designed to design load. If the end of PC beam can be designed with continuous end, the dapped end of PC beam and the ledger of PC girder do not need to resist to all loads except dead load and construction load. The experimental program was carried out with 7 specimens containing the variable factors as the anchored method of the hanger bar, design load, be or not exist of ledger bars. As a result, the continuity of the dapped end and the ledger were ensured their safety although the design load was only the dead load and the construction load. The shear critical section was expanded toward the effective depth d, the distance from the supported position of the beam. If the ledger is designed according to PCI Design Handbook, the structural system of the ledger is as to the cantilever slab system. But the ledger of this study is as to the 3 side fixed slab system. Therefore the design of the ledger by PCI Design Handbook will lead to highly conservative results.

Scan Matching based De-skewing Algorithm for 2D Indoor PCD captured from Mobile Laser Scanning (스캔 매칭 기반 실내 2차원 PCD de-skewing 알고리즘)

  • Kang, Nam-woo;Sa, Se-Won;Ryu, Min Woo;Oh, Sangmin;Lee, Chanwoo;Cho, Hunhee;Park, Insung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.22 no.3
    • /
    • pp.40-51
    • /
    • 2021
  • MLS (Mobile Laser Scanning) which is a scanning method done by moving the LiDAR (Light Detection and Ranging) is widely employed to capture indoor PCD (Point Cloud Data) for floor plan generation in the AEC (Architecture, Engineering, and Construction) industry. The movement and rotation of LiDAR in the scanning phase cause deformation (i.e. skew) of PCD and impose a significant impact on quality of output. Thus, a de-skewing method is required to increase the accuracy of geometric representation. De-skewing methods which use position and pose information of LiDAR collected by IMU (Inertial Measurement Unit) have been mainly developed to refine the PCD. However, the existing methods have limitations on de-skewing PCD without IMU. In this study, a novel algorithm for de-skewing 2D PCD captured from MLS without IMU is presented. The algorithm de-skews PCD using scan matching between points captured from adjacent scan positions. Based on the comparison of the deskewed floor plan with the benchmark derived from TLS (Terrestrial Laser Scanning), the performance of proposed algorithm is verified by reducing the average mismatched area 49.82%. The result of this study shows that the accurate floor plan is generated by the de-skewing algorithm without IMU.

A numerical study on the influence of small underground cavities for estimation of slope safety factor (소규모 지하공동이 사면안전율 산정에 미치는 영향에 관한 수치해석 연구)

  • An, Joon-Sang;Kang, Kyung-Nam;Song, Ki-Il;Kim, Byung-Chan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.5
    • /
    • pp.621-640
    • /
    • 2019
  • Quantitative stability assessment of underground cavities can be presented as a factor of safety based on the Shear Strength Reduction Method (SSRM). Also, SSRM is one of the stability evaluation methods commonly used in slope stability analysis. However, there is a lack of research that considers the relationship between the probability of occurrence of cavities in the ground and the potential failure surface of the slope at the same time. In this study, the effect of small underground cavities on the failure behavior of the slope was analyzed by using SSRM. Considering some of the glaciology studies, there is a case that suggests that there is a cavity effect inside the glacier in the condition that the glacier slides. In this study, the stability evaluation of underground cavities and slope stability analysis, where SSRM is used in geotechnical engineering field, was carried out considering simultaneous conditions. The slope stability analysis according to the shape and position change of underground cavities which are likely to occur in the lower part of a mountain road was analyzed by using SSRM in FLAC3D software and the influence of underground cavities on the slope factor of safety was confirmed. If there are underground cavities near slope potential failure surface, it will affect the calculation of a factor of safety. The results of this study are expected to be basic data on slope stability analysis with small underground cavities.

Extra-phase Image Generation for Its Potential Use in Dose Evaluation for a Broad Range of Respiratory Motion

  • Lee, Hyun Su;Choi, Chansoo;Kim, Chan Hyeong;Han, Min Cheol;Yeom, Yeon Soo;Nguyen, Thang Tat;Kim, Seonghoon;Choi, Sang Hyoun;Lee, Soon Sung;Kim, Jina;Hwang, JinHo;Kang, Youngnam
    • Journal of Radiation Protection and Research
    • /
    • v.44 no.3
    • /
    • pp.103-109
    • /
    • 2019
  • Background: Four-dimensional computed tomographic (4DCT) images are increasingly used in clinic with the growing need to account for the respiratory motion of the patient during radiation treatment. One of the reason s that makes the dose evaluation using 4DCT inaccurate is a change of the patient respiration during the treatment session, i.e., intrafractional uncertainty. Especially, when the amplitude of the patient respiration is greater than the respiration range during the 4DCT acquisition, such an organ motion from the larger respiration is difficult to be represented with the 4DCT. In this paper, the method to generate images expecting the organ motion from a respiration with extended amplitude was proposed and examined. Materials and Methods: We propose a method to generate extra-phase images from a given set of the 4DCT images using deformable image registration (DIR) and linear extrapolation. Deformation vector fields (DVF) are calculated from the given set of images, then extrapolated according to respiratory surrogate. The extra-phase images are generated by applying the extrapolated DVFs to the existing 4DCT images. The proposed method was tested with the 4DCT of a physical 4D phantom. Results and Discussion: The tumor position in the generated extra-phase image was in a good agreement with that in the gold-standard image which is separately acquired, using the same 4DCT machine, with a larger range of respiration. It was also found that we can generate the best quality extra-phase image by using the maximum inhalation phase (T0) and maximum exhalation phase (T50) images for extrapolation. Conclusion: In the present study, a method to construct extra-phase images that represent expanded respiratory motion of the patient has been proposed and tested. The movement of organs from a larger respiration amplitude can be predicted by the proposed method. We believe the method may be utilized for realistic simulation of radiation therapy.

Rendering Quality Improvement Method based on Depth and Inverse Warping (깊이정보와 역변환 기반의 포인트 클라우드 렌더링 품질 향상 방법)

  • Lee, Heejea;Yun, Junyoung;Park, Jong-Il
    • Journal of Broadcast Engineering
    • /
    • v.26 no.6
    • /
    • pp.714-724
    • /
    • 2021
  • The point cloud content is immersive content recorded by acquiring points and colors corresponding to the real environment and objects having three-dimensional location information. When a point cloud content consisting of three-dimensional points having position and color information is enlarged and rendered, the gap between the points widens and an empty hole occurs. In this paper, we propose a method for improving the quality of point cloud contents through inverse transformation-based interpolation using depth information for holes by finding holes that occur due to the gap between points when expanding the point cloud. The points on the back are rendered between the holes created by the gap between the points, acting as a hindrance to applying the interpolation method. To solve this, remove the points corresponding to the back side of the point cloud. Next, a depth map at the point in time when an empty hole is generated is extracted. Finally, inverse transform is performed to extract pixels from the original data. As a result of rendering content by the proposed method, the rendering quality improved by 1.2 dB in terms of average PSNR compared to the conventional method of increasing the size to fill the blank area.

Full-mouth rehabilitation using digital method to transfer provisional restoration to final fixed implant restoration (디지털 방법을 활용하여 임시수복물을 최종 고정성 임플란트 수복물로 이행한 완전 구강 회복 증례)

  • Cho, Eunhan;Lee, Younghoo;Hong, Seoung-Jin;Paek, Janghyun;Pae, Ahran;Kim, Hyeong-Seob;Kwon, Kung-Rock;Noh, Kwantae
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.60 no.4
    • /
    • pp.362-373
    • /
    • 2022
  • For a full-mouth fixed prosthetic treatment of the edentulous patient, it is essential to confirm the proper tooth position and thorough evaluation of the remaining alveolar bone and soft tissue before surgery. CAD-CAM dentistry and guided implant surgery have such advantages of providing simultaneous planning of surgery and prosthetic treatment to ensure pre-knowledge of the treatment. In this clinical case, using the digital technology, digital temporary denture fabrication, esthetic evaluation before fixed prostheses treatment, and guided surgery planning was possible. After the surgery, previously obtained data was used for fabricating fixed temporary prostheses. Definitive zirconia prostheses transferred from the provisional prostheses were fabricated and functionally and esthetically satisfying results were obtained.

Large-view-volume Multi-view Ball-lens Display using Optical Module Array (광학 모듈 어레이를 이용한 넓은 시야 부피의 다시점 볼 렌즈 디스플레이)

  • Gunhee Lee;Daerak Heo;Jeonghyuk Park;Minwoo Jung;Joonku Hahn
    • Journal of Broadcast Engineering
    • /
    • v.28 no.1
    • /
    • pp.79-89
    • /
    • 2023
  • A multi-view display is regarded as the most practical technology to provide a three-dimensional effect to a viewer because it can provide an appropriate viewpoint according to the observer's position. But, most multi-view displays with flat shapes have a disadvantage in that a viewer watches 3D images only within a limited front viewing angle. In this paper, we proposed a spherical display using a ball lens with spherical symmetry that provides perfect parallax by extending the viewing zone to 360 degrees. In the proposed system, each projection lens is designed to be packaged into a small modular array, and the module array is arranged in a spherical shape around a ball lens to provide vertical and horizontal parallax. Through the applied optical module, the image is formed in the center of the ball lens, and 3D contents are clearly imaged with the size of about 0.65 times the diameter of the ball lens when the viewer watches them within the viewing window. Therefore, the feasibility of a 360-degree full parallax display that overcomes the spherical aberration of a ball lens and provides a wide field of view is confirmed experimentally.

Comparison Among Sensor Modeling Methods in High-Resolution Satellite Imagery (고해상도 위성영상의 센서모형과 방법 비교)

  • Kim, Eui Myoung;Lee, Suk Kun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6D
    • /
    • pp.1025-1032
    • /
    • 2006
  • Sensor modeling of high-resolution satellites is a prerequisite procedure for mapping and GIS applications. Sensor models, describing the geometric relationship between scene and object, are divided into two main categories, which are rigorous and approximate sensor models. A rigorous model is based on the actual geometry of the image formation process, involving internal and external characteristics of the implemented sensor. However, approximate models require neither a comprehensive understanding of imaging geometry nor the internal and external characteristics of the imaging sensor, which has gathered a great interest within photogrammetric communities. This paper described a comparison between rigorous and various approximate sensor models that have been used to determine three-dimensional positions, and proposed the appropriate sensor model in terms of the satellite imagery usage. Through the case study of using IKONOS satellite scenes, rigorous and approximate sensor models have been compared and evaluated for the positional accuracy in terms of acquirable number of ground controls. Bias compensated RFM(Rational Function Model) turned out to be the best among compared approximate sensor models, both modified parallel projection and parallel-perspective model were able to be modelled with a small number of controls. Also affine transformation, one of the approximate sensor models, can be used to determine the planimetric position of high-resolution satellites and perform image registration between scenes.