DOI QR코드

DOI QR Code

Scan Matching based De-skewing Algorithm for 2D Indoor PCD captured from Mobile Laser Scanning

스캔 매칭 기반 실내 2차원 PCD de-skewing 알고리즘

  • Kang, Nam-woo (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Sa, Se-Won (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Ryu, Min Woo (HanmiGlobal) ;
  • Oh, Sangmin (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Lee, Chanwoo (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Cho, Hunhee (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Park, Insung (School of Civil, Environmental and Architectural Engineering, Korea University)
  • 강남우 (고려대학교 건축사회환경공학과) ;
  • 사세원 (고려대학교 건축사회환경공학과) ;
  • 류민우 (한미글로벌) ;
  • 오상민 (고려대학교 건축사회환경공학과) ;
  • 이찬우 (고려대학교 건축사회환경공학과) ;
  • 조훈희 (고려대학교 건축사회환경공학과) ;
  • 박인성 (고려대학교 건축사회환경공학과)
  • Received : 2021.02.06
  • Accepted : 2021.04.26
  • Published : 2021.05.31

Abstract

MLS (Mobile Laser Scanning) which is a scanning method done by moving the LiDAR (Light Detection and Ranging) is widely employed to capture indoor PCD (Point Cloud Data) for floor plan generation in the AEC (Architecture, Engineering, and Construction) industry. The movement and rotation of LiDAR in the scanning phase cause deformation (i.e. skew) of PCD and impose a significant impact on quality of output. Thus, a de-skewing method is required to increase the accuracy of geometric representation. De-skewing methods which use position and pose information of LiDAR collected by IMU (Inertial Measurement Unit) have been mainly developed to refine the PCD. However, the existing methods have limitations on de-skewing PCD without IMU. In this study, a novel algorithm for de-skewing 2D PCD captured from MLS without IMU is presented. The algorithm de-skews PCD using scan matching between points captured from adjacent scan positions. Based on the comparison of the deskewed floor plan with the benchmark derived from TLS (Terrestrial Laser Scanning), the performance of proposed algorithm is verified by reducing the average mismatched area 49.82%. The result of this study shows that the accurate floor plan is generated by the de-skewing algorithm without IMU.

실내 도면 획득을 위해 실내 형상정보를 습득할 수 있는 MLS (Mobile Laser Scanning)가 건설업에서 주목받고 있다. MLS의 특성상 스캐닝 중 LiDAR (Light Detection and Ranging)의 움직임을 발생하며, 이로 인해 습득된 포인트가 왜곡되는 skew가 발생한다. 이러한 skew를 보정하고 정확한 형상정보를 획득하기 위해 관성측정장치를 활용한 de-skewing 기법에 관한 연구가 진행되고 있다. 하지만, 해당 연구들은 관성측정장치를 활용하기 어려운 환경에서 사용하기 어려운 한계점이 있다. 이에 본 연구에서는 MLS로 습득한 실내 2차원 PCD (Point Cloud Data)를 대상으로 관성측정장치를 사용하지 않은 de-skewing 기법을 제시하였다. 해당 알고리즘은 인접한 스캔 지점의 포인트 간의 스캔 매칭을 통해 skew를 보정하였다. TLS (Terrestrial Laser Scanning)로 습득한 기준 데이터와 본 알고리즘을 통해 de-skewing을 진행한 데이터를 비교하여 검증하였으며, 모든 조건에서 면적 오차를 평균 49.82% 감소하여 본 알고리즘을 통해 관성측정장치 없이 정확한 실내 도면 도출이 가능함을 보였다.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2018R1A4A1026027).

References

  1. Al-Nuaimi, A., Lopes, W., Zeller, P., Garcea, A., Lopes, C., and Steinbach, E. (2016). "Analyzing LiDAR scan skewing and its impact on scan matching." In 2016 International Conference on Indoor Positioning and Indoor Navigation (IPIN) (pp. 1-8). IEEE.
  2. Asadi, K., and Han, K. (2020). "An Integrated Aerial and Ground Vehicle (UAV-UGV) System for Automated Data Collection for Indoor Construction Sites." In Construction Research Congress 2020: Computer Applications (pp. 846-855). Reston, VA: American Society of Civil Engineers.
  3. Berrut, J.P., and Trefethen, L.N. (2004). "Barycentric lagrange interpolation." SIAM review, 46(3), pp. 501-517. https://doi.org/10.1137/S0036144502417715
  4. Besl, P.J., and McKay, N.D. (1992). Method for registration of 3-D shapes. In Sensor fusion IV: control paradigms and data structures (Vol. 1611, pp. 586-606). International Society for Optics and Photonics.
  5. Che, E., Jung, J., and Olsen, M.J. (2019). "Object recognition, segmentation, and classification of mobile laser scanning point clouds: A state of the art review." Sensors, 19(4), p. 810. https://doi.org/10.3390/s19040810
  6. Di Filippo, A., Sanchez-Aparicio, L.J., Barba, S., Martin-Jimenez, J.A., Mora, R., amd Gonzalez Aguilera, D. (2018). "Use of a wearable mobile laser system in seamless indoor 3D mapping of a complex historical site." Remote Sensing, 10(12), p. 1897. https://doi.org/10.3390/rs10121897
  7. Ding, Z., Liu, S., Liao, L., amd Zhang, L. (2019). "A digital construction framework integrating building information modeling and reverse engineering technologies for renovation projects." Automation in Construction, 102, pp. 45-58. https://doi.org/10.1016/j.autcon.2019.02.012
  8. Elseicy, A., Nikoohemat, S., Peter, M., and Elberink, S.O. (2018). "Space subdivision of indoor mobile laser scanning data based on the scanner trajectory." Remote sensing, 10(11), p. 1815. https://doi.org/10.3390/rs10111815
  9. Gankhuyag, U., and Han, J.H. (2020). "Automatic 2D Floorplan CAD Generation from 3D Point Clouds." Applied Sciences, 10(8), p. 2817. https://doi.org/10.3390/app10082817
  10. He, L., Jin, Z., and Gao, Z. (2020). "De-Skewing LiDAR Scan for Refinement of Local Mapping." Sensors, 20(7), p. 1846. https://doi.org/10.3390/s20071846
  11. Holmqvist, N. (2018). HANDHELD LIDAR ODOMETRY ESTIMATION AND MAPPING SYSTEM. MS thesis, Malardalen University.
  12. Kim, C., Jo, K., Cho, S., and Sunwoo, M. (2017). "Optimal smoothing based mapping process of road surface marking in urban canyon environment." In 2017 14th Workshop on Positioning, Navigation and Communications (WPNC) (pp. 1-6). IEEE.
  13. Kuramachi, R., Ohsato, A., Sasaki, Y., and Mizoguchi, H. (2015). "G-ICP SLAM: An odometry-free 3D mapping system with robust 6DoF pose estimation." In 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO) (pp. 176-181). IEEE.
  14. Lau, L., Quan, Y., Wan, J., Zhou, N., Wen, C., Qian, N., and Jing, F. (2018). "An autonomous ultra-wide band-based attitude and position determination technique for indoor mobile laser scanning." ISPRS International Journal of Geo-Information, 7(4), p. 155. https://doi.org/10.3390/ijgi7040155
  15. Li, J., Zhong, R., Hu, Q., and Ai, M. (2016). "Feature-based laser scan matching and its application for indoor mapping." Sensors, 16(8), p. 1265. https://doi.org/10.3390/s16081265
  16. Lu, C., Uchiyama, H., Thomas, D., Shimada, A., and Taniguchi, R.I. (2019). "Indoor positioning system based on chest-mounted IMU." Sensors, 19(2), p. 420. https://doi.org/10.3390/s19020420
  17. Lu, F., and Milios, E. (1997). "Robot pose estimation in unknown environments by matching 2d range scans." Journal of Intelligent and Robotic systems, 18(3), pp. 249-275. https://doi.org/10.1023/A:1007957421070
  18. Minstry of Land, Infrastructure and Transport (2020). Statics on Buildings in 2019.
  19. Moosmann, F., and Stiller, C. (2011). Velodyne slam. In 2011 ieee intelligent vehicles symposium (iv) (pp. 393-398). IEEE.
  20. Sauer, T., and Xu, Y. (1995). "On multivariate Lagrange interpolation." Mathematics of computation, 64(211), pp. 1147-1170. https://doi.org/10.1090/S0025-5718-1995-1297477-5
  21. Wang, C., Hou, S., Wen, C., Gong, Z., Li, Q., Sun, X., and Li, J. (2018). "Semantic line framework-based indoor building modeling using backpacked laser scanning point cloud." ISPRS journal of photogrammetry and remote sensing, 143, pp. 150-166. https://doi.org/10.1016/j.isprsjprs.2018.03.025
  22. Wen, C., Pan, S., Wang, C., and Li, J. (2016). "An indoor backpack system for 2-D and 3-D mapping of building interiors." IEEE Geoscience and Remote Sensing Letters, 13(7), pp. 992-996. https://doi.org/10.1109/LGRS.2016.2558486
  23. Ye, H., Chen, Y., and Liu, M. (2019). "Tightly coupled 3d lidar inertial odometry and mapping." In 2019 International Conference on Robotics and Automation (ICRA) (pp. 3144-3150). IEEE.
  24. Vlaminck, M., Luong, H.Q., Goeman, W., Veelaert, P., and Philips, W. (2016). Towards online mobile mapping using inhomogeneous lidar data. In 2016 IEEE Intelligent Vehicles Symposium (IV) (pp. 845-850). IEEE.