DOI QR코드

DOI QR Code

Comparison Among Sensor Modeling Methods in High-Resolution Satellite Imagery

고해상도 위성영상의 센서모형과 방법 비교

  • 김의명 ((주)한국공간정보통신 3차원GIS기술연구팀) ;
  • 이석군 (영남건설기술교육원)
  • Received : 2006.08.22
  • Accepted : 2006.09.15
  • Published : 2006.11.29

Abstract

Sensor modeling of high-resolution satellites is a prerequisite procedure for mapping and GIS applications. Sensor models, describing the geometric relationship between scene and object, are divided into two main categories, which are rigorous and approximate sensor models. A rigorous model is based on the actual geometry of the image formation process, involving internal and external characteristics of the implemented sensor. However, approximate models require neither a comprehensive understanding of imaging geometry nor the internal and external characteristics of the imaging sensor, which has gathered a great interest within photogrammetric communities. This paper described a comparison between rigorous and various approximate sensor models that have been used to determine three-dimensional positions, and proposed the appropriate sensor model in terms of the satellite imagery usage. Through the case study of using IKONOS satellite scenes, rigorous and approximate sensor models have been compared and evaluated for the positional accuracy in terms of acquirable number of ground controls. Bias compensated RFM(Rational Function Model) turned out to be the best among compared approximate sensor models, both modified parallel projection and parallel-perspective model were able to be modelled with a small number of controls. Also affine transformation, one of the approximate sensor models, can be used to determine the planimetric position of high-resolution satellites and perform image registration between scenes.

고해상도 위성의 센서모형화는 도면화와 지형공간정보(Geo-spatial Information System)의 응용을 위해서는 필수적인 단계이다. 영상과 대상물과의 기하학적인 관계를 규정하는 센서모형은 크게 엄밀(rigorous)센서모형화와 간략(approximate)센서모형화의 두 가지로 나눌 수 있다. 엄밀센서모형화는 위성의 실제적인 촬영기하를 고려한 것으로 센서의 내외부적인 특성을 알고 있어야 하는 반면에 간략센서모형화 방법은 영상취득기하의 종합적인 이해나 센서의 내외부적인 특성정보를 필요로 하지 않기 때문에 사진측량 커뮤니티에서 많은 관심이 증대되고 있다. 본 연구에서는 고해상도 위성영상의 3차원 위치결정에 이용되고 있는 엄밀센서모형과 다양한 간략센서모형에 대해 비교연구를 수행하였으며 위성영상의 이용목적에 따른 적합한 모형화 방법을 제안하였다. IKONOS 위성영상을 이용한 사례연구를 통하여 엄밀센서모형과 간략센서모형에 대한 비교연구를 수행하였으며, 수집 가능한 지상기준점에 따른 위치정확도를 평가하였다. 간략센서모형화 방법 중에서 편의보정된 다항식비례모형(bias compensated RFM)이 가장 우수하였으며 개량평행투영모형(modified parallel projection)과 평행-중심투영모형(parallel-perspective model)은 적은 수의 기준점을 이용하여 센서모형화가 가능하였다. 또한 간략센서모형화 방법 중 부등각사상변환(affine transformation)은 고해상도 위성의 수평위치결정과 영상간의 등록에 활용가능하다.

Keywords

References

  1. 김의명, 김성삼, 유환희(2005) 평행투영모형에 의한 IKONOS 위성영상의 수치고도모형 생성, 한국지형공간정보학회지, 한국지형공간정보학회, 제13권 제1호, pp. 55-61
  2. 김의명, 정원조(2004) 영상좌표 보정을 통한 SPOT 위성영상의 모형화 개선, 대한토목학회논문집, 대한토목학회, 제24권 제4D호, pp. 641-648
  3. 김의명, 함창학(2005) 위성영상의 에피폴라 기하특성 분석, 대한토목학회논문집, 대한토목학회, 제25권 제2D호, pp. 347-352
  4. Baltsavias, E., Pateraki, M., and Zhang, L. (2001) Radiometric and Geometric Evaluation of IKONOS GEO Images and Their Use for 3D Building Modelling, Proc. Joint ISPRS Workshop 'High Resolution Mapping from Space 2001', Hannover, 19-21 September, 21p. (on CDROM)
  5. Dial, G. and Grodecki, J., (2004) Satellite Image Block Adjustment Simulations with Physical And RPC Camera Models, ASPRS Annual Conference Proceedings, May 2004, Denver, Colorado, (on CDROM)
  6. Dial, G., Bowen, H., Gerlach, F., Grodecki, J., and Oleszczuk, R., (2003) IKONOS satellite, imagery, and products, Remote Sensing of Environment, Vol. 88, pp. 23-26 https://doi.org/10.1016/j.rse.2003.08.014
  7. Digital Globe (2006) QuickBird Image Products - Product Guide Revision 4.7.2. http://www.digitalglobe.com/downloads/QuickBird%20Imagery%20 Products%20-%20Product%20Guide.pdf
  8. EI-Manadili, Y. and Novak, K. (1996) Precision rectification of SPOT imagery using the direct linear transformation model, Photogrammetruc Engineering & Remote Sensing, Vol. 62, No. 1, pp. 67-72
  9. Fraser, C. and Hanley, H. (2003) Bias compensation in rational functions for IKONOS satellite imagery, Photogrammetric Engineering and Remote Sensing, Vol. 69, No. 1, pp. 53-57 https://doi.org/10.14358/PERS.69.1.53
  10. Fraser, C. S. and Yamakawa, T. (2004) Insights into the affine model for high-resolution satellite sensor orientation, ISPRS Journal of Photogrammetry & Remote Sensing, Vol. 58, pp. 275- 288 https://doi.org/10.1016/j.isprsjprs.2003.10.001
  11. Grodecki, J. and Dial, G. (2001) Ikonos geometric accuracy. Proceedings of Joint ISPRS Workshop on High Resolution Mapping from Space, 2001. Hanover, 19-21 September 2001 (on CD ROM)
  12. Gruen, A. (2001) Potential and Limitations of High-Resolution Satellite Imagery. Keynote Address, 21st Asian Conference on Remote Sensing, Taipei, 4-8 December 2000, p. 13
  13. Gruen, A, Li, Z., and Henri Eisenbeiss (2005) 3D Precision Processing of High-Resolution Satellite Imagery, ASPRS 2005 Annual Conference 'Geospatial Goes Global: From Your Neighborhood to the Whole Planet' March 7-11, Baltimore, Maryland
  14. Gupta, R. and Hartley, R. I. (1997) Linear pushbroom cameras, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 189, No. 9, pp. 963-975
  15. Hanley, H. B. and Fraser, C. S. (2004) Sensor orientation for highresolution satellite imagery: Further insights into bias-compensated RPCs, The International Archives of the Phtogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 35 Part B1, Istanbul, Turkey
  16. Kim, E., Morgan, M., Kim, C., Kim, K., Jeong, S., and Habib, A, (2005) Comprehensive Comparisons Among Alternative Sensor Models for High Resolution Satellite Imagery, Geoscience and Remote Sensing Symposium, 2005. IGARSS '05. Proceedings. 2005 IEEE International, Vol. 8, 25-29 July 2005, pp. 5580 - 5583
  17. Morgan, M., Kim, K., Jeong, S., and Habib, A. (2004) Parallel Projection Modelling for Linear Array Scanner Scenes, XXth ISPRS Congress, Istanbul, Turkey, PS WG III/1: Sensor Pose Estimation, pp. 52-57
  18. Okamoto, A., Fraser, C., Hattori, S., Hasegawa, H., and Tetsu, Ono (1998) An alternative approach to the triangulation of SPOT imagery, IAPRS International Archives of Photogrammetry and Remote Sensing, Vol. 32, B4, pp. 457-462
  19. Tao, C., Hu, Y, Mercer, J., Schnick, S., and Zhang, Y. (2000) Image rectification using a generic sensor model-rational function model, The International Archives of Photogrammetry and Remote Sensing, Vol. 33, Part B3, Amsterdam, The Netherlands, pp. 874-881
  20. Tao, C. V. and Hu, Y. (2001) A comprehensive study of the rational function model for photogrammetric processing, Photogrammetry Engineering and Remote Sensing, Vol. 66, No. 12, pp. 1477-1485
  21. Tao, C. V. and Hu, Y. (2002) 3-D Reconstruction method based on the rational function model, Photogrammetry Engineering and Remote Sensing, Vol. 68, No. 7, pp. 705-714
  22. Valadan Zoej, M. J. and Sadeghian, S. (2003) Rigorous and NonRigorous Photogrammetric Processing of Ikonos Geo Image, Joint Workshop of ISPRS Working Groups 1/2, 1/5, IC WG II/IV, and EARSeL Special Interest Group: 3D Remote Sensing
  23. Wang, Y. (1999) Automated Triangulation of Linear Scanner Imagery. Joint Workshop of ISPRS WG I/1, I/3 and IV/4, Sensors and Mapping from Space, Hanover, September 27-30
  24. Zhang, J. and Zhang, X. (2002) Strict geometric model based on affine transformation for remote sensing image with high resolution, International Archives of Photogrammetry and Remote Sensing, Vol. 34, No. B3, pp. 309-312