• 제목/요약/키워드: 2-type hypersurfaces

검색결과 29건 처리시간 0.022초

2-TYPE HYPERSURFACES SATISFYING ⟨Δx, x - x0⟩ = const.

  • Jang, Changrim
    • East Asian mathematical journal
    • /
    • 제34권5호
    • /
    • pp.643-649
    • /
    • 2018
  • Let M be a connected n-dimensional submanifold of a Euclidean space $E^{n+k}$ equipped with the induced metric and ${\Delta}$ its Laplacian. If the position vector x of M is decomposed as a sum of three vectors $x=x_1+x_2+x_0$ where two vectors $x_1$ and $x_2$ are non-constant eigenvectors of the Laplacian, i.e., ${\Delta}x_i={\lambda}_ix_i$, i = 1, 2 (${\lambda}_i{\in}R$) and $x_0$ is a constant vector, then, M is called a 2-type submanifold. In this paper we proved that a connected 2-type hypersurface M in $E^{n+1}$ whose postion vector x satisfies ${\langle}{\Delta}x,x-x_0{\rangle}=c$ for a constant c, where ${\langle}$, ${\rangle}$ is the usual inner product in $E^{n+1}$, is of null 2-type and has constant mean curvature and scalar curvature.

REAL HYPERSURFACES OF TYPE A IN COMPLEX TWO-PLANE GRASSMANNIANS RELATED TO THE NORMAL JACOBI OPERATOR

  • Jeong, Im-Soon;Suh, Young-Jin;Tripathi, Mukut Mani
    • 대한수학회보
    • /
    • 제49권2호
    • /
    • pp.423-434
    • /
    • 2012
  • In this paper we give a characterization of real hypersurfaces of type (A) in a complex two-plane Grassmannian $G_2(\mathbb{C}^{m+2})$ which is a tube over a totally geodesic $G_2(\mathbb{C}^{m+1})$ in $G_2(\mathbb{C}^{m+2})$, in terms of two commuting conditions related to the normal Jacobi operator and the shape operator.

REAL HYPERSURFACES OF TYPE B IN COMPLEX TWO-PLANE GRASSMANNIANS RELATED TO THE REEB VECTOR

  • Lee, Hyun-Jin;Suh, Young-Jin
    • 대한수학회보
    • /
    • 제47권3호
    • /
    • pp.551-561
    • /
    • 2010
  • In this paper we give a new characterization of real hypersurfaces of type B, that is, a tube over a totally geodesic $\mathbb{Q}P^n$ in complex two-plane Grassmannians $G_2(\mathbb{C}^{m+2})$, where m = 2n, with the Reeb vector $\xi$ belonging to the distribution $\mathfrak{D}$, where $\mathfrak{D}$ denotes a subdistribution in the tangent space $T_xM$ such that $T_xM$ = $\mathfrak{D}{\bigoplus}\mathfrak{D}^{\bot}$ for any point $x{\in}M$ and $\mathfrak{D}^{\bot}=Span{\xi_1,\;\xi_2,\;\xi_3}$.

REAL HYPERSURFACES IN COMPLEX TWO-PLANE GRASSMANNIANS WHOSE SHAPE OPERATOR IS OF CODAZZI TYPE IN GENERALIZED TANAKA-WEBSTER CONNECTION

  • Cho, Kyusuk;Lee, Hyunjin;Pak, Eunmi
    • 대한수학회보
    • /
    • 제52권1호
    • /
    • pp.57-68
    • /
    • 2015
  • In this paper, we give a non-existence theorem of Hopf hypersurfaces in complex two-plane Grassmannians $G_2(\mathbb{C}^{m+2})$, $m{\geq}3$, whose shape operator is of Codazzi type in generalized Tanaka-Webster connection $\hat{\nabla}^{(k)}$.

ASCREEN LIGHTLIKE HYPERSURFACES OF A SEMI-RIEMANNIAN SPACE FORM WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION

  • Jin, Dae Ho
    • 대한수학회논문집
    • /
    • 제29권2호
    • /
    • pp.311-317
    • /
    • 2014
  • We study lightlike hypersurfaces of a semi-Riemannian space form $\tilde{M}(c)$ admitting a semi-symmetric non-metric connection. First, we construct a type of lightlike hypersurfaces according to the form of the structure vector field of $\tilde{M}(c)$, which is called a ascreen lightlike hypersurface. Next, we prove a characterization theorem for such an ascreen lightlike hypersurface endow with a totally geodesic screen distribution.

LIGHTLIKE HYPERSURFACES OF AN INDEFINITE GENERALIZED SASAKIAN SPACE FORM WITH A SYMMETRIC METRIC CONNECTION OF TYPE (ℓ, m)

  • Jin, Dae Ho
    • 대한수학회논문집
    • /
    • 제31권3호
    • /
    • pp.613-624
    • /
    • 2016
  • We define a new connection on a semi-Riemannian manifold. Its notion contains two well known notions; (1) semi-symmetric connection and (2) quarter-symmetric connection. In this paper, we study the geometry of lightlike hypersurfaces of an indefinite generalized Sasakian space form with a symmetric metric connection of type (${\ell}$, m).

HYPERSURFACES IN 𝕊4 THAT ARE OF Lk-2-TYPE

  • Lucas, Pascual;Ramirez-Ospina, Hector-Fabian
    • 대한수학회보
    • /
    • 제53권3호
    • /
    • pp.885-902
    • /
    • 2016
  • In this paper we begin the study of $L_k$-2-type hypersurfaces of a hypersphere ${\mathbb{S}}^{n+1}{\subset}{\mathbb{R}}^{n+2}$ for $k{\geq}1$ Let ${\psi}:M^3{\rightarrow}{\mathbb{S}}^4$ be an orientable $H_k$-hypersurface, which is not an open portion of a hypersphere. Then $M^3$ is of $L_k$-2-type if and only if $M^3$ is a Clifford tori ${\mathbb{S}}^1(r_1){\times}{\mathbb{S}}^2(r_2)$, $r^2_1+r^2_2=1$, for appropriate radii, or a tube $T^r(V^2)$ of appropriate constant radius r around the Veronese embedding of the real projective plane ${\mathbb{R}}P^2({\sqrt{3}})$.

Characterizations of some real hypersurfaces in a complex space form in terms of lie derivative

  • Ki, U-Hang;Suh, Young-Jin
    • 대한수학회지
    • /
    • 제32권2호
    • /
    • pp.161-170
    • /
    • 1995
  • A complex $n(\geq 2)$-dimensional Kaehlerian manifold of constant holomorphic sectional curvature c is called a complex space form, which is denoted by $M_n(c)$. A complete and simply connected complex space form is a complex projective space $P_nC$, a complex Euclidean space $C^n$ or a complex hyperbolic space $H_nC$, according as c > 0, c = 0 or c < 0. Takagi [12] and Berndt [2] classified all homogeneous real hypersufaces of $P_nC$ and $H_nC$.

  • PDF

ON CHARACTERIZATIONS OF REAL HYPERSURFACES WITH ${\eta}-PARALLEL$ RICCI OPERATORS IN A COMPLEX SPACE FORM

  • Kim, In-Bae;Park, Hye-Jeong;Sohn, Woon-Ha
    • 대한수학회보
    • /
    • 제43권2호
    • /
    • pp.235-244
    • /
    • 2006
  • We shall give a characterization of a real hypersurface M in a complex space form Mn(c), $c\;{\neq}\;0$, whose Ricci operator and structure tensor commute each other on the holomorphic distribution of M, and the Ricci operator is ${\eta}-parallel$.