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2-TYPE HYPERSURFACES SATISFYING 〈∆x, x− x0〉 = const.

Changrim Jang

Abstract. Let M be a connected n-dimensional submanifold of a Eu-
clidean space En+k equipped with the induced metric and ∆ its Lapla-

cian. If the position vector x of M is decomposed as a sum of three vectors

x = x1 + x2 + x0 where two vectors x1 and x2 are non-constant eigen-
vectors of the Laplacian , i.e., ∆xi = λixi, i = 1, 2 ( λi ∈ R) and x0 is a

constant vector, then, M is called a 2-type submanifold. In this paper we

proved that a connected 2-type hypersurface M in En+1 whose postion
vector x satisfies 〈∆x, x−x0〉 = c for a constant c, where 〈 , 〉 is the usual

inner product in En+1, is of null 2-type and has constant mean curvature
and scalar curvature.

1. Introduction

Let M be an n-dimensional submanifold of the (n+k)-dimensionl Euclidean
space En+k, equipped with the induced metric. Denote by ∆ the Laplacian
of M . If the position vector x of M in En+k can be decomposed as a finite
sum of non-constant eigenvectors of ∆, we shall say that M is of finite-type.
More precisely, M is said to be of q-type if the position vector x of M can be
expressed as in the following form:

x = x0 + xi1 + · · ·+ xiq ,

where x0 is a constant vector, and xij (j = 1, · · · , q) are non-constant vectors

in En+k such that ∆xij = λijxij , λij ∈ R, λi1 < · · · < λiq . The notion
of finite-type submanifolds was introduced by B.-Y. Chen [1]. Many results
concerning this subject are obtained during last three decades. One of the
interesting research areas on this subject is a classification of 2-type submani-
folds and sevaral authors obtained important results ([2][5][6]). The only known
examples of finite-type hypersurface are minimal hypersurfaces, hyperspheres,
and a spherical cylinders. One can observe that the position vector x of every
known finite-type hypersurface satisfies the condition

〈∆x, x− x0〉 = c (1)
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for a fixed constant vector x0 and a constant c, where 〈 , 〉 means the usual inner
product in Euclidean space. In [3], the author and H. Jo studied a connected
2-type surface M in E3 satisfying the condition (1) whose postion vector x is
decomposed as x = x0 + x1 + x2, ∆xi = λixi, i = 1, 2 and showed M is an
open part of a circular cylinder. In this paper, we will study a connected 2-type
hypersurface M whose postion vector x satisfying the condition (1) and will
show that such a hypersurface M is of null 2-type (i.e., one of λi’s is zero.)
and has constant mean curvature and scalar curvature. Moreover we will show
that its support function 〈x − x0, en+1〉, where en+1 is a unit normal to M , is
constant.

2. Preliminaries

Consider a hypersurface M of En+1 and denote ∇̄ and ∇ the usaual Rie-
mannian connection of En+1 and the induced connection on M , respectively.
The formulas of Gauss and Weingarten are given respectively by

∇̄XY = ∇XY + h(X,Y ),

∇̄Xξ = −AξX +DXξ (2)

for vector fields X,Y tangent to M and ξ normal to M , where h is the second
fundamental form, D the normal connnection, and A the shape operator of M .
For each normal vector ξ at a point p ∈ M , the shape operator Aξ is a self
adjoint operator of the tangent space TpM at p. The second fundamental form
h and the shape operator A are related by

〈AξX,Y 〉 = 〈h(X,Y ), ξ〉, (3)

where 〈 , 〉 is the usaual inner product in En+1. Let v be an En+1-valued
smooth function on M , and let {e1, e2, · · · , en} be a local orthornomal frame
field of M . We define

∆v =

n∑
i=1

(∇̄ei∇̄eiv − ∇̄∇ei
eiv).

It is well known that the position vector x and the mean curvature vector H of
M in En+1 satisfy

∆x = H. (4)

Let en+1 be a local unit normal vector to M . Since the mean curvature vector
H is normal to M , we have H = 〈H, en+1〉en+1. The function 〈H, en+1〉 is
called mean curvature function and it will be denoted by α. The general basic
formula of ∆H derived in [1] plays an important role in the study of low type.
In particular, if M is a hypersurface in En+1, it reduces to

∆H = (∆α− α||Aen+1 ||2)en+1 − 2Aen+1(gradα)− αgradα. (5)
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3. 2-type hypersurface in En+1 satisfying 〈∆x, x− x0〉 = const.

Let M be a connected 2-type hypersurface in En+1. Then its position vector
x is expressed in the form

x = x0 + x1 + x2,

where x0 is a constant vector, and xi(i = 1, 2) are nonconstant vectors in En+1

such that ∆xi = λixi, λi ∈ R, λ1 6= λ2. By (4) we have ∆x = H = λ1x1 +λ2x2

and ∆2x = ∆H = λ2
1x1 + λ2

2x2. Thus

∆2x = (λ1 + λ2)∆x− λ1λ2(x− x0). (6)

By comparing the tangential part of both (5) and (6), we find

λ1λ2(x− x0)T = 2Aen+1
(gradα) + αgradα, (7)

where (x− x0)T means the tangential part of the vector x− x0. Now suppose
that M satisfies 〈∆x, x−x0〉 = c for a constant c. We have the following lemma.

Lemma 3.1. Let M be a hypersurface of the Euclidean sapce En+1 satifying
the condition 〈∆x, x− x0〉 = c for a constant vector x0 and a constant c. Then
we get the following:

〈∆2x, x− x0〉 = 〈∆x,∆x〉. (8)

Proof. Let {e1, e2, · · · , en} be a local orthonormal frame of M . Since

∆〈∆x, x− x0〉 =

n∑
i=1

eiei〈∆x, x− x0〉 −
n∑
i=1

∇eiei〈∆x, x− x0〉

=

n∑
i=1

ei(〈∇̄ei(∆x), x− x0〉+ 〈∆x, ei〉)

−
n∑
i=1

(〈∇̄∇ei
ei(∆x), x− x0〉+ 〈∆x,∇eiei〉)

=

n∑
i=1

ei〈∇̄ei(∆x), x− x0〉 −
2∑
i=1

〈∇̄∇ei
ei(∆x), x− x0〉
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=

n∑
i=1

(〈∇̄ei∇̄ei(∆x), x− x0〉+ 〈∇̄ei(∆x), ei〉)

−
n∑
i=1

〈∇̄∇ei
ei(∆x), x− x0〉

= 〈∆(∆x), x− x0〉+

n∑
i=1

〈∇̄ei(∆x), ei〉

= 〈∆2x, x− x0〉+

n∑
i=1

〈Dei(∆x)−A∆xei, ei〉 (by (2))

= 〈∆2x, x− x0〉 −
n∑
i=1

〈A∆xei, ei〉

= 〈∆2x, x− x0〉 −
n∑
i=1

〈∆x, h(ei, ei)〉 (by (3))

= 〈∆2x, x− x0〉 − 〈∆x,∆x〉

and 〈∆x, x− x0〉 = c, we have

〈∆2x, x− x0〉 = 〈∆x,∆x〉.
�

From (6), (8) and 〈∆x, x− x0〉 = c, we get

(λ1 + λ2)c− λ1λ2〈x− x0, x− x0〉 − α2 = 0.

Differentiating both sides of the above equation in the direction of a tangent
vector X on M , we find

−2λ1λ2〈x− x0, X〉 − 2αX(α) = 0

or

X(α) = −λ1λ2

α
〈X, (x− x0)T 〉.

This implies that

gradα = −λ1λ2

α
(x− x0)T . (9)

Proposition 3.2. Let M be a connnected 2-type hypersurface in En+1 whose
position vector x is expressed as x = x0 +x1 +x2, where x0 is a constant vector,
and xi(i = 1, 2) are nonconstant vectors in En+1 such that ∆xi = λixi, λi ∈ R,
λ1 6= λ2. Then M satisfies 〈∆x, x − x0〉 = c for a constant c if and only if M
is a null 2-type hypersurface with cosnstant mean curvature and constant scalar
curvature and its support finction 〈x − x0, en+1〉, where en+1 is a unit normal
to M , is constant.
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Proof. First we will show that the necessary condition holds. Suppose that α
is nonconstant. Since gradα 6= 0, by (9) M is not of null 2-type. Substituting
(9) into (7) we get

Aen+1(x− x0)T = −α(x− x0)T ,

which implies that gradα is a principal vector of the shape operator Aen+1
and

the corresponding principal curvature is −α. Since

〈∆x, x− x0〉 = 〈αen+1, x− x0〉 = c,

we have

〈en+1, x− x0〉 =
c

α
.

Differentiating both sides of the above eqaution in the direction of the tangent
vector fields e1 which is parallel to gradα, we find

〈αe1, x− x0〉 = −e1(α)c

α2
,

or

〈αe1, (x− x0)T 〉 = −e1(α)c

α2
.

From (9) we know that (x− x0)T = − α
λ1λ2

gradα. Since gradα = e1(α)e1, from
the above equation, we get

−e1(α)α2

λ1λ2
= −e1(α)c

α2

or

e1(α)
α4 − cλ1λ2

λ1λ2α2
= 0,

which implies that α is constant. This is a contradiction. So the mean curva-
ture α is constant. Subsequently, from (9), we know that M is of null 2-type.
Without loss of generalty, we may assume that λ2 = 0 and ∆x = ∆x1 = λ1x1.

Since ∆x = αen+1, we find α2 = λ2
1||x1||2 or ||x1||2 = α2

λ2
1
. From ∆H = λ2

1x1

and (7) we know that λ1 = −||Aen+1
||2. So we can conclude that the scalar

curvature of M is constant. From (8), we can see that

〈λ2
1x1, x1 + x2〉 = 〈∆x, x− x0〉 = 〈∆x,∆x〉 = 〈λ1x1, λ1x1〉.

So we have 〈x1, x2〉 = 0, which means that x2 is tangential. Therefore the
support fuction 〈x − x0, en+1〉 is equal to the constant α

λ1
. So the necessary

part is proven. The sufficient condition can be easily proven. �

Corollary 3.3. [3] Let M be a connected 2-type surface in E3 whose position
vector x is expressed as x = x0 + x1 + x2, where x0 is a constant vector, and xi
(i = 1, 2) are nonconstant vectors in E3 such that ∆xi = λixi, λi ∈ R, λ1 6= λ2.
Assume that 〈∆x, x− x0〉 = c holds for a constant c. Then M is an open part
of a circular cylinder.
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Proof. By Proposition 3.2 , the mean curvature and the Gauss curvature of M
is consatnt. Thus M is an open part of a plane or a sphere or a circular cylinder.
But both of plane and sphere are of 1-type. So M is an open part of a circular
cylinder. �

Corollary 3.4. Let M be a connected 2-type hypersurface in E4 whose position
vector x is expressed as x = x0 + x1 + x2, where x0 is a constant vector, and
xi(i = 1, 2) are nonconstant vectors in E4 such that ∆xi = λixi, λi ∈ R,
λ1 6= λ2. Assume that 〈∆x, x − x0〉 = c holds for a constant c. Then M is an
open part of a spherical cylinder.

Proof. By Proposition 3.2 M is of null 2-type. So we may assume that λ2 = 0.
Also we can see that x1 is normal to M and x2 is tangential to M and the
support function 〈x − x0, e4〉, where e4 is a unit normal vector field to M , is
constant. Differentiating this in the direction of arbitrary tangent vector X, we
get

〈x− x0,−Ae4X〉 = 〈x2,−Ae4X〉 = −〈Ae4x2, X〉 = 0.

This implies that Ae4x2 = 0. If the set {p ∈ M |x2(p) = 0} has a nonempty
interior, then M is locally 1-type, which is a contradiction. Thus we can say that
the set {p ∈ M |x2(p) = 0} has a empty interior and 0 is a principal curvature
of M . By Proposition 3.2 the mean curvature and the scalar curvture M is
constant. So every principal curvature of M is constant. Therefore M is an
open part of a spherical cylinder. �

Corollary 3.5. Let M be a complete oriented 2-type hypersurface in En+1

whose position vector x is expressed as x = x0 +x1 +x2, where x0 is a constant
vector, and xi(i = 1, 2) are nonconstant vectors in En+1 such that ∆xi = λixi,
λi ∈ R, λ1 6= λ2. Assume that 〈∆x, x − x0〉 = c holds for a constant c. Then
M is a spherical cylinder.

Proof. In [4] it was shown that a connected and oriented complete hypersurface
with constant support function in Euclidean space is either hyperplane or a
hypersphere or a spherical cylinder. By Proposition 3.2 M is of null 2-type
and its support function is constant. So we can conclude that M is a spherical
cylinder. �
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