East Asian Math. J.
Vol. 34 (2018), No. 5, pp. 643-649
YNMS
http://dx.doi.org/10.7858/eamj.2018.044

2-TYPE HYPERSURFACES SATISFYING $\left\langle\Delta x, x-x_{0}\right\rangle=$ const.

Changrim Jang

Abstract

Let M be a connected n-dimensional submanifold of a Euclidean space E^{n+k} equipped with the induced metric and Δ its Laplacian. If the position vector x of M is decomposed as a sum of three vectors $x=x_{1}+x_{2}+x_{0}$ where two vectors x_{1} and x_{2} are non-constant eigenvectors of the Laplacian, i.e., $\Delta x_{i}=\lambda_{i} x_{i}, i=1,2\left(\lambda_{i} \in R\right)$ and x_{0} is a constant vector, then, M is called a 2-type submanifold. In this paper we proved that a connected 2-type hypersurface M in E^{n+1} whose postion vector x satisfies $\left\langle\Delta x, x-x_{0}\right\rangle=c$ for a constant c, where \langle,$\rangle is the usual$ inner product in E^{n+1}, is of null 2-type and has constant mean curvature and scalar curvature.

1. Introduction

Let M be an n-dimensional submanifold of the $(n+k)$-dimensionl Euclidean space E^{n+k}, equipped with the induced metric. Denote by Δ the Laplacian of M. If the position vector x of M in E^{n+k} can be decomposed as a finite sum of non-constant eigenvectors of Δ, we shall say that M is of finite-type. More precisely, M is said to be of q-type if the position vector x of M can be expressed as in the following form:

$$
x=x_{0}+x_{i_{1}}+\cdots+x_{i_{q}},
$$

where x_{0} is a constant vector, and $x_{i_{j}}(j=1, \cdots, q)$ are non-constant vectors in E^{n+k} such that $\Delta x_{i_{j}}=\lambda_{i_{j}} x_{i_{j}}, \lambda_{i_{j}} \in R, \lambda_{i_{1}}<\cdots<\lambda_{i_{q}}$. The notion of finite-type submanifolds was introduced by B.-Y. Chen [1]. Many results concerning this subject are obtained during last three decades. One of the interesting research areas on this subject is a classification of 2-type submanifolds and sevaral authors obtained important results ([2][5][6]). The only known examples of finite-type hypersurface are minimal hypersurfaces, hyperspheres, and a spherical cylinders. One can observe that the position vector x of every known finite-type hypersurface satisfies the condition

$$
\begin{equation*}
\left\langle\Delta x, x-x_{0}\right\rangle=c \tag{1}
\end{equation*}
$$

Received July 9, 2018; Accepted September 11, 2018.
2010 Mathematics Subject Classification. 53C40.
Key words and phrases. Laplacian, 2-type hypersurfaces, null 2-type hypersurfaces.
for a fixed constant vector x_{0} and a constant c, where \langle,$\rangle means the usual inner$ product in Euclidean space. In [3], the author and H. Jo studied a connected 2-type surface M in E^{3} satisfying the condition (1) whose postion vector x is decomposed as $x=x_{0}+x_{1}+x_{2}, \Delta x_{i}=\lambda_{i} x_{i}, i=1,2$ and showed M is an open part of a circular cylinder. In this paper, we will study a connected 2 -type hypersurface M whose postion vector x satisfying the condition (1) and will show that such a hypersurface M is of null 2-type (i.e., one of λ_{i} 's is zero.) and has constant mean curvature and scalar curvature. Moreover we will show that its support function $\left\langle x-x_{0}, e_{n+1}\right\rangle$, where e_{n+1} is a unit normal to M, is constant.

2. Preliminaries

Consider a hypersurface M of E^{n+1} and denote $\bar{\nabla}$ and ∇ the usaual Riemannian connection of E^{n+1} and the induced connection on M, respectively. The formulas of Gauss and Weingarten are given respectively by

$$
\begin{align*}
\bar{\nabla}_{X} Y & =\nabla_{X} Y+h(X, Y) \\
\bar{\nabla}_{X} \xi & =-A_{\xi} X+D_{X} \xi \tag{2}
\end{align*}
$$

for vector fields X, Y tangent to M and ξ normal to M, where h is the second fundamental form, D the normal connnection, and A the shape operator of M. For each normal vector ξ at a point $p \in M$, the shape operator A_{ξ} is a self adjoint operator of the tangent space $T_{p} M$ at p. The second fundamental form h and the shape operator A are related by

$$
\begin{equation*}
\left\langle A_{\xi} X, Y\right\rangle=\langle h(X, Y), \xi\rangle, \tag{3}
\end{equation*}
$$

where \langle,$\rangle is the usaual inner product in E^{n+1}$. Let v be an E^{n+1}-valued smooth function on M, and let $\left\{e_{1}, e_{2}, \cdots, e_{n}\right\}$ be a local orthornomal frame field of M. We define

$$
\Delta v=\sum_{i=1}^{n}\left(\bar{\nabla}_{e_{i}} \bar{\nabla}_{e_{i}} v-\bar{\nabla}_{\left.\nabla_{e_{i} e_{i}} v\right)} .\right.
$$

It is well known that the position vector x and the mean curvature vector H of M in E^{n+1} satisfy

$$
\begin{equation*}
\Delta x=H \tag{4}
\end{equation*}
$$

Let e_{n+1} be a local unit normal vector to M. Since the mean curvature vector H is normal to M, we have $H=\left\langle H, e_{n+1}\right\rangle e_{n+1}$. The function $\left\langle H, e_{n+1}\right\rangle$ is called mean curvature function and it will be denoted by α. The general basic formula of ΔH derived in [1] plays an important role in the study of low type. In particular, if M is a hypersurface in E^{n+1}, it reduces to

$$
\begin{equation*}
\Delta H=\left(\Delta \alpha-\alpha\left\|A_{e_{n+1}}\right\|^{2}\right) e_{n+1}-2 A_{e_{n+1}}(\operatorname{grad} \alpha)-\alpha \operatorname{grad} \alpha . \tag{5}
\end{equation*}
$$

3. 2-type hypersurface in E^{n+1} satisfying $\left\langle\Delta x, x-x_{0}\right\rangle=$ const.

Let M be a connected 2-type hypersurface in E^{n+1}. Then its position vector x is expressed in the form

$$
x=x_{0}+x_{1}+x_{2}
$$

where x_{0} is a constant vector, and $x_{i}(i=1,2)$ are nonconstant vectors in E^{n+1} such that $\Delta x_{i}=\lambda_{i} x_{i}, \lambda_{i} \in R, \lambda_{1} \neq \lambda_{2}$. By (4) we have $\Delta x=H=\lambda_{1} x_{1}+\lambda_{2} x_{2}$ and $\Delta^{2} x=\Delta H=\lambda_{1}^{2} x_{1}+\lambda_{2}^{2} x_{2}$. Thus

$$
\begin{equation*}
\Delta^{2} x=\left(\lambda_{1}+\lambda_{2}\right) \Delta x-\lambda_{1} \lambda_{2}\left(x-x_{0}\right) . \tag{6}
\end{equation*}
$$

By comparing the tangential part of both (5) and (6), we find

$$
\begin{equation*}
\lambda_{1} \lambda_{2}\left(x-x_{0}\right)^{T}=2 A_{e_{n+1}}(\operatorname{grad} \alpha)+\alpha \operatorname{grad} \alpha, \tag{7}
\end{equation*}
$$

where $\left(x-x_{0}\right)^{T}$ means the tangential part of the vector $x-x_{0}$. Now suppose that M satisfies $\left\langle\Delta x, x-x_{0}\right\rangle=c$ for a constant c. We have the following lemma.

Lemma 3.1. Let M be a hypersurface of the Euclidean sapce E^{n+1} satifying the condition $\left\langle\Delta x, x-x_{0}\right\rangle=c$ for a constant vector x_{0} and a constant c. Then we get the following:

$$
\begin{equation*}
\left\langle\Delta^{2} x, x-x_{0}\right\rangle=\langle\Delta x, \Delta x\rangle . \tag{8}
\end{equation*}
$$

Proof. Let $\left\{e_{1}, e_{2}, \cdots, e_{n}\right\}$ be a local orthonormal frame of M. Since

$$
\begin{aligned}
\Delta\left\langle\Delta x, x-x_{0}\right\rangle= & \sum_{i=1}^{n} e_{i} e_{i}\left\langle\Delta x, x-x_{0}\right\rangle-\sum_{i=1}^{n} \nabla_{e_{i}} e_{i}\left\langle\Delta x, x-x_{0}\right\rangle \\
= & \sum_{i=1}^{n} e_{i}\left(\left\langle\bar{\nabla}_{e_{i}}(\Delta x), x-x_{0}\right\rangle+\left\langle\Delta x, e_{i}\right\rangle\right) \\
& -\sum_{i=1}^{n}\left(\left\langle\bar{\nabla}_{\nabla_{e_{i}} e_{i}}(\Delta x), x-x_{0}\right\rangle+\left\langle\Delta x, \nabla_{e_{i}} e_{i}\right\rangle\right) \\
= & \sum_{i=1}^{n} e_{i}\left\langle\bar{\nabla}_{e_{i}}(\Delta x), x-x_{0}\right\rangle-\sum_{i=1}^{2}\left\langle\bar{\nabla}_{\nabla_{e_{i}} e_{i}}(\Delta x), x-x_{0}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
= & \sum_{i=1}^{n}\left(\left\langle\bar{\nabla}_{e_{i}} \bar{\nabla}_{e_{i}}(\Delta x), x-x_{0}\right\rangle+\left\langle\bar{\nabla}_{e_{i}}(\Delta x), e_{i}\right\rangle\right) \\
& -\sum_{i=1}^{n}\left\langle\bar{\nabla}_{\nabla_{e_{i}} e_{i}}(\Delta x), x-x_{0}\right\rangle \\
= & \left\langle\Delta(\Delta x), x-x_{0}\right\rangle+\sum_{i=1}^{n}\left\langle\bar{\nabla}_{e_{i}}(\Delta x), e_{i}\right\rangle \\
= & \left\langle\Delta^{2} x, x-x_{0}\right\rangle+\sum_{i=1}^{n}\left\langle D_{e_{i}}(\Delta x)-A_{\Delta x} e_{i}, e_{i}\right\rangle(\text { by }(2)) \\
= & \left\langle\Delta^{2} x, x-x_{0}\right\rangle-\sum_{i=1}^{n}\left\langle A_{\Delta x} e_{i}, e_{i}\right\rangle \\
= & \left\langle\Delta^{2} x, x-x_{0}\right\rangle-\sum_{i=1}^{n}\left\langle\Delta x, h\left(e_{i}, e_{i}\right)\right\rangle(\text { by }(3)) \\
= & \left\langle\Delta^{2} x, x-x_{0}\right\rangle-\langle\Delta x, \Delta x\rangle
\end{aligned}
$$

and $\left\langle\Delta x, x-x_{0}\right\rangle=c$, we have

$$
\left\langle\Delta^{2} x, x-x_{0}\right\rangle=\langle\Delta x, \Delta x\rangle .
$$

From (6), (8) and $\left\langle\Delta x, x-x_{0}\right\rangle=c$, we get

$$
\left(\lambda_{1}+\lambda_{2}\right) c-\lambda_{1} \lambda_{2}\left\langle x-x_{0}, x-x_{0}\right\rangle-\alpha^{2}=0 .
$$

Differentiating both sides of the above equation in the direction of a tangent vector X on M, we find

$$
-2 \lambda_{1} \lambda_{2}\left\langle x-x_{0}, X\right\rangle-2 \alpha X(\alpha)=0
$$

or

$$
X(\alpha)=-\frac{\lambda_{1} \lambda_{2}}{\alpha}\left\langle X,\left(x-x_{0}\right)^{T}\right\rangle
$$

This implies that

$$
\begin{equation*}
\operatorname{grad} \alpha=-\frac{\lambda_{1} \lambda_{2}}{\alpha}\left(x-x_{0}\right)^{T} . \tag{9}
\end{equation*}
$$

Proposition 3.2. Let M be a connnected 2-type hypersurface in E^{n+1} whose position vector x is expressed as $x=x_{0}+x_{1}+x_{2}$, where x_{0} is a constant vector, and $x_{i}(i=1,2)$ are nonconstant vectors in E^{n+1} such that $\Delta x_{i}=\lambda_{i} x_{i}, \lambda_{i} \in R$, $\lambda_{1} \neq \lambda_{2}$. Then M satisfies $\left\langle\Delta x, x-x_{0}\right\rangle=c$ for a constant c if and only if M is a null 2-type hypersurface with cosnstant mean curvature and constant scalar curvature and its support finction $\left\langle x-x_{0}, e_{n+1}\right\rangle$, where e_{n+1} is a unit normal to M, is constant.

Proof. First we will show that the necessary condition holds. Suppose that α is nonconstant. Since $\operatorname{grad} \alpha \neq 0$, by (9) M is not of null 2-type. Substituting (9) into (7) we get

$$
A_{e_{n}+1}\left(x-x_{0}\right)^{T}=-\alpha\left(x-x_{0}\right)^{T}
$$

which implies that $\operatorname{grad} \alpha$ is a principal vector of the shape operator $A_{e_{n+1}}$ and the corresponding principal curvature is $-\alpha$. Since

$$
\left\langle\Delta x, x-x_{0}\right\rangle=\left\langle\alpha e_{n+1}, x-x_{0}\right\rangle=c,
$$

we have

$$
\left\langle e_{n+1}, x-x_{0}\right\rangle=\frac{c}{\alpha} .
$$

Differentiating both sides of the above eqaution in the direction of the tangent vector fields e_{1} which is parallel to $\operatorname{grad} \alpha$, we find

$$
\left\langle\alpha e_{1}, x-x_{0}\right\rangle=-\frac{e_{1}(\alpha) c}{\alpha^{2}}
$$

or

$$
\left\langle\alpha e_{1},\left(x-x_{0}\right)^{T}\right\rangle=-\frac{e_{1}(\alpha) c}{\alpha^{2}} .
$$

From (9) we know that $\left(x-x_{0}\right)^{T}=-\frac{\alpha}{\lambda_{1} \lambda_{2}} \operatorname{grad} \alpha$. Since $\operatorname{grad} \alpha=e_{1}(\alpha) e_{1}$, from the above equation, we get

$$
-\frac{e_{1}(\alpha) \alpha^{2}}{\lambda_{1} \lambda_{2}}=-\frac{e_{1}(\alpha) c}{\alpha^{2}}
$$

or

$$
e_{1}(\alpha) \frac{\alpha^{4}-c \lambda_{1} \lambda_{2}}{\lambda_{1} \lambda_{2} \alpha^{2}}=0
$$

which implies that α is constant. This is a contradiction. So the mean curvature α is constant. Subsequently, from (9), we know that M is of null 2-type. Without loss of generalty, we may assume that $\lambda_{2}=0$ and $\Delta x=\Delta x_{1}=\lambda_{1} x_{1}$. Since $\Delta x=\alpha e_{n+1}$, we find $\alpha^{2}=\lambda_{1}^{2}\left\|x_{1}\right\|^{2}$ or $\left\|x_{1}\right\|^{2}=\frac{\alpha^{2}}{\lambda_{1}^{2}}$. From $\Delta H=\lambda_{1}^{2} x_{1}$ and (7) we know that $\lambda_{1}=-\left\|A_{e_{n+1}}\right\|^{2}$. So we can conclude that the scalar curvature of M is constant. From (8), we can see that

$$
\left\langle\lambda_{1}^{2} x_{1}, x_{1}+x_{2}\right\rangle=\left\langle\Delta x, x-x_{0}\right\rangle=\langle\Delta x, \Delta x\rangle=\left\langle\lambda_{1} x_{1}, \lambda_{1} x_{1}\right\rangle .
$$

So we have $\left\langle x_{1}, x_{2}\right\rangle=0$, which means that x_{2} is tangential. Therefore the support fuction $\left\langle x-x_{0}, e_{n+1}\right\rangle$ is equal to the constant $\frac{\alpha}{\lambda_{1}}$. So the necessary part is proven. The sufficient condition can be easily proven.

Corollary 3.3. [3] Let M be a connected 2-type surface in E^{3} whose position vector x is expressed as $x=x_{0}+x_{1}+x_{2}$, where x_{0} is a constant vector, and x_{i} $(i=1,2)$ are nonconstant vectors in E^{3} such that $\Delta x_{i}=\lambda_{i} x_{i}, \lambda_{i} \in R, \lambda_{1} \neq \lambda_{2}$. Assume that $\left\langle\Delta x, x-x_{0}\right\rangle=c$ holds for a constant c. Then M is an open part of a circular cylinder.

Proof. By Proposition 3.2, the mean curvature and the Gauss curvature of M is consatnt. Thus M is an open part of a plane or a sphere or a circular cylinder. But both of plane and sphere are of 1-type. So M is an open part of a circular cylinder.

Corollary 3.4. Let M be a connected 2 -type hypersurface in E^{4} whose position vector x is expressed as $x=x_{0}+x_{1}+x_{2}$, where x_{0} is a constant vector, and $x_{i}(i=1,2)$ are nonconstant vectors in E^{4} such that $\Delta x_{i}=\lambda_{i} x_{i}, \lambda_{i} \in R$, $\lambda_{1} \neq \lambda_{2}$. Assume that $\left\langle\Delta x, x-x_{0}\right\rangle=c$ holds for a constant c. Then M is an open part of a spherical cylinder.

Proof. By Proposition 3.2 M is of null 2-type. So we may assume that $\lambda_{2}=0$. Also we can see that x_{1} is normal to M and x_{2} is tangential to M and the support function $\left\langle x-x_{0}, e_{4}\right\rangle$, where e_{4} is a unit normal vector field to M, is constant. Differentiating this in the direction of arbitrary tangent vector X, we get

$$
\left\langle x-x_{0},-A_{e_{4}} X\right\rangle=\left\langle x_{2},-A_{e_{4}} X\right\rangle=-\left\langle A_{e_{4}} x_{2}, X\right\rangle=0 .
$$

This implies that $A_{e_{4}} x_{2}=0$. If the set $\left\{p \in M \mid x_{2}(p)=0\right\}$ has a nonempty interior, then M is locally 1-type, which is a contradiction. Thus we can say that the set $\left\{p \in M \mid x_{2}(p)=0\right\}$ has a empty interior and 0 is a principal curvature of M. By Proposition 3.2 the mean curvature and the scalar curvture M is constant. So every principal curvature of M is constant. Therefore M is an open part of a spherical cylinder.
Corollary 3.5. Let M be a complete oriented 2-type hypersurface in E^{n+1} whose position vector x is expressed as $x=x_{0}+x_{1}+x_{2}$, where x_{0} is a constant vector, and $x_{i}(i=1,2)$ are nonconstant vectors in E^{n+1} such that $\Delta x_{i}=\lambda_{i} x_{i}$, $\lambda_{i} \in R, \lambda_{1} \neq \lambda_{2}$. Assume that $\left\langle\Delta x, x-x_{0}\right\rangle=c$ holds for a constant c. Then M is a spherical cylinder.

Proof. In [4] it was shown that a connected and oriented complete hypersurface with constant support function in Euclidean space is either hyperplane or a hypersphere or a spherical cylinder. By Proposition $3.2 M$ is of null 2-type and its support function is constant. So we can conclude that M is a spherical cylinder.

References

[1] B.-Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, World Scientific, 2nd edition, Siganpore, 2015.
[2] B.-Y. Chen, Null 2-type surfaces in E^{3} are circular cylinders, Kodai Math. J. 11 (1988), 295-299.
[3] C. Jang and H. Jo, 2-type surfaces and quadric hypersurfaces satisfying $\langle\Delta x, x\rangle=$ const., East Asian Math. J. 33 (2017), no. 5, 571-585.
[4] Th. Hasanis and D. Koutroufiotis, Hupersurfaces with a constant support function, Arch. Math. 57, (1991), 189-192.
[5] Th. Hasanis and Th. Vlachos, a local classification of 2-type surfaces in S^{3}, Proc. Amer. Math. Soc. 112 (1991), no. 2, 533-538.
[6] Th. Hasanis and Th. Vlachos, Spherical 2-type hypersurface, J. Geom. 40 (1991), 82-94.
Changrim Jang
Dept. of Mathematcs, College of Natural Science
University of UlSan 44610, Ulsan, Korea
E-mail address: crjang@mail.ulsan.ac.kr

