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2-TYPE HYPERSURFACES SATISFYING (Az,z — xo) = const.

CHANGRIM JANG

ABSTRACT. Let M be a connected n-dimensional submanifold of a Eu-
clidean space E™tk equipped with the induced metric and A its Lapla-
cian. If the position vector z of M is decomposed as a sum of three vectors
r = x1 + x2 + xo where two vectors x1 and z2 are non-constant eigen-
vectors of the Laplacian , i.e., Az; = \jz;,i = 1,2 ( A\; € R) and zo is a
constant vector, then, M is called a 2-type submanifold. In this paper we
proved that a connected 2-type hypersurface M in E™+! whose postion
vector x satisfies (Ax,x — o) = c for a constant ¢, where (, ) is the usual
inner product in E™t1, is of null 2-type and has constant mean curvature
and scalar curvature.

1. Introduction

Let M be an n-dimensional submanifold of the (n + k)-dimensionl Euclidean
space E™t* equipped with the induced metric. Denote by A the Laplacian
of M. If the position vector z of M in E™* can be decomposed as a finite
sum of non-constant eigenvectors of A, we shall say that M is of finite-type.
More precisely, M is said to be of g-type if the position vector x of M can be
expressed as in the following form:

T =T+ Tiy + e+ Ty,

where x¢ is a constant vector, and z;,(j = 1,--- ,q) are non-constant vectors
in E™* guch that Az, = ANjxi;, Ni; € R, Njj < --- < A, The notion
of finite-type submanifolds was introduced by B.-Y. Chen [1]. Many results
concerning this subject are obtained during last three decades. Omne of the
interesting research areas on this subject is a classification of 2-type submani-
folds and sevaral authors obtained important results ([2][5][6]). The only known
examples of finite-type hypersurface are minimal hypersurfaces, hyperspheres,
and a spherical cylinders. One can observe that the position vector z of every

known finite-type hypersurface satisfies the condition

(Az,x — x9) = ¢ (1)
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for a fixed constant vector xg and a constant ¢, where (, ) means the usual inner
product in Euclidean space. In [3], the author and H. Jo studied a connected
2-type surface M in E? satisfying the condition (1) whose postion vector x is
decomposed as x = xg + x1 + T2, Ax; = Nz, 0 = 1,2 and showed M is an
open part of a circular cylinder. In this paper, we will study a connected 2-type
hypersurface M whose postion vector x satisfying the condition (1) and will
show that such a hypersurface M is of null 2-type (i.e., one of A;’s is zero.)
and has constant mean curvature and scalar curvature. Moreover we will show
that its support function (x — g, e,11), where e, 1 is a unit normal to M, is
constant.

2. Preliminaries

Consider a hypersurface M of E"*! and denote V and V the usaual Rie-
mannian connection of E”*! and the induced connection on M, respectively.
The formulas of Gauss and Weingarten are given respectively by

vXY VXY+h(XaY)7
Vxé = —A¢X + Dx¢ (2)

for vector fields X,Y tangent to M and & normal to M, where h is the second
fundamental form, D the normal connnection, and A the shape operator of M.
For each normal vector { at a point p € M, the shape operator A¢ is a self
adjoint operator of the tangent space 1, M at p. The second fundamental form
h and the shape operator A are related by

<A5X’ Y> = <h(X’Y)7§>? (3)

where ( , ) is the usaual inner product in E"™!. Let v be an E"T!-valued
smooth function on M, and let {e1,eq2, - ,e,} be a local orthornomal frame
field of M. We define

n

Av = Z(Veivetv = Vv, e0)

i=1
It is well known that the position vector z and the mean curvature vector H of
M in E"T! satisfy

Ax =H. (4)

Let e,41 be alocal unit normal vector to M. Since the mean curvature vector
H is normal to M, we have H = (H,e,q1)ep+1. The function (H,e,1q) is
called mean curvature function and it will be denoted by «. The general basic

formula of AH derived in [1] plays an important role in the study of low type.
In particular, if M is a hypersurface in E"*1, it reduces to

AH = (Aa —a|Ae,,, ||*)en+1 — 24, ., (grada) — agrada. (5)
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3. 2-type hypersurface in E"t! satisfying (Az,z — xy) = const.

Let M be a connected 2-type hypersurface in E"*1. Then its position vector
x is expressed in the form

Tr=2x9+ 21+ T2,

where ¢ is a constant vector, and x;(i = 1,2) are nonconstant vectors in E"*!
such that Az; = ANz, A € R, \q # Xa. By (4) we have Az = H = A\x1 + Aaxo
and A%z = AH = M2y + \2x5. Thus

AQSC == ()\1 + )\Q)AZE - )\1)\2(17 - .’,Eo). (6)
By comparing the tangential part of both (5) and (6), we find

Moz — x0)T =24 grada) + agrada, (7)

en+1(

where (x — x9)?7 means the tangential part of the vector x — x¢. Now suppose
that M satisfies (Az, z—xg) = c for a constant c. We have the following lemma.

Lemma 3.1. Let M be a hypersurface of the Euclidean sapce E™*! satifying
the condition (Ax,x — xg) = ¢ for a constant vector xg and a constant c. Then
we get the following:

(A%z, 2 — x0) = (Ax, Az). (8)

Proof. Let {e1,eq, -+ ,e,} be a local orthonormal frame of M. Since

A{Az,x —xg) = Z eei{Ax,x — xo) — Z Ve, ei{Az,x — x0)

i=1 i=1

ei((Ve, (Az), 2 — 20) + (Az, €))

NE

.
Il

(<?Ve,‘,€i (AJ?), L= $0> + <A$, v5i6i>)

<

R

2
ei<v6i (A[L’),:L’ - (E0> - Z<vvci€i(A‘r)a T — :L'()>

1 i=1

M=

o
Il
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n

= Z(Waﬁm(ﬁx), = x0) + (Ve,(Az), €5))

—Y Vv, e(Az), 2 — o)

i=1

= (A(Az),z —xo) + Z(?ei (Az),e;)

i=1

= (A%r,2—w0) + ) (De,(Az) = Anges ) (by (2))

-

©
I
—

M=

= (A’z,x—x0) — Y (Aases,e;)

1

.
Il

M=

= (A%z,x — x0) — (Ax,h(e; e;)) (by (3))

i=1
= (A%z,x — x0) — (Azx, Az)

and (Az,z — zg) = ¢, we have

(A2, 2 — x0) = (Az, Az).

From (6), (8) and (Az,z — z¢) = ¢, we get
()\1 + )\2)0 - )\1)\2<l‘ — ZTg, T — SL’0> —a?2=0.

Differentiating both sides of the above equation in the direction of a tangent
vector X on M, we find

—2M A2 (x — g, X) — 20X (a) =0

or
A1 A
X() = ==X, (@ — 20)").
This implies that
A T
grada = — (x —xp)" . 9)

Proposition 3.2. Let M be a connnected 2-type hypersurface in E™T1 whose
position vector x is expressed as r = xg+x1+x2, where xg is a constant vector,
and z;(i = 1,2) are nonconstant vectors in E"*! such that Ax; = N\iz;, \; € R,
A1 # Aa. Then M satisfies (Ax,x — xo) = ¢ for a constant ¢ if and only if M
is a null 2-type hypersurface with cosnstant mean curvature and constant scalar
curvature and its support finction (x — xg, eny1), where epp1 s a unit normal
to M, is constant.
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Proof. First we will show that the necessary condition holds. Suppose that «
is nonconstant. Since grada # 0, by (9) M is not of null 2-type. Substituting
(9) into (7) we get

Ae,1(z —x0)" = —a(z —z)"

)

which implies that grada is a principal vector of the shape operator A and

the corresponding principal curvature is —a. Since

€n+1

(Az,x — x9) = {@ept1,T — x0) = ¢,
we have
c
(en+1,7 — x0) = o

Differentiating both sides of the above eqaution in the direction of the tangent
vector fields e; which is parallel to gradca, we find

e1(a)e
(aer, @ — x0) = f%,
or
e1(a)e
(s, (& — o)) = ~ 2
!
From (9) we know that (z — z0)? = — 55, grada. Since grada = ej(a)er, from
the above equation, we get
er(@)a®  e(a)c
)\1)\2 - a2
or
4— e
e1(a a T M2 0,

)\1)\20[2
which implies that « is constant. This is a contradiction. So the mean curva-
ture « is constant. Subsequently, from (9), we know that M is of null 2-type.
Without loss of generalty, we may assume that Ao = 0 and Az = Ax; = \x;.

Since Az = aept1, we find a? = A}||z1]]? or ||21]]? = ‘;\‘—; From AH = M\
and (7) we know that A\; = —||A.,,,[|>. So we can conclude that the scalar

curvature of M is constant. From (8), we can see that
(Nxy, 21 4 20) = (Az, 2 — 30) = (A, Az) = (N2, A\ 21).

So we have (x1,2z3) = 0, which means that xs is tangential. Therefore the
support fuction (z — xg,e,41) is equal to the constant 5. So the necessary
part is proven. The sufficient condition can be easily proven. U

Corollary 3.3. [3] Let M be a connected 2-type surface in E3 whose position
vector x is expressed as x = xg+ x1 + T2, where xg is a constant vector, and x;
(i = 1,2) are nonconstant vectors in E® such that Ax; = \iwy, \i € R, A1 # \a.
Assume that (Ax,z — xo) = ¢ holds for a constant c. Then M is an open part
of a circular cylinder.
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Proof. By Proposition 3.2 , the mean curvature and the Gauss curvature of M
is consatnt. Thus M is an open part of a plane or a sphere or a circular cylinder.
But both of plane and sphere are of 1-type. So M is an open part of a circular
cylinder. O

Corollary 3.4. Let M be a connected 2-type hypersurface in E* whose position
vector x is erpressed as x = xg + x1 + T2, where xqy is a constant vector, and
z;(i = 1,2) are nonconstant vectors in E* such that Ax; = M\x;, \; € R,
A1 # Ao Assume that (Ax,xz — xo) = ¢ holds for a constant c. Then M is an
open part of a spherical cylinder.

Proof. By Proposition 3.2 M is of null 2-type. So we may assume that Ay = 0.
Also we can see that x; is normal to M and xo is tangential to M and the
support function (x — xg,e4), where ey is a unit normal vector field to M, is
constant. Differentiating this in the direction of arbitrary tangent vector X, we
get
(x — 2o, —Ae, X) = (@9, —Ac, X) = —(Ag, 22, X) = 0.

This implies that A.,z2 = 0. If the set {p € M|z2(p) = 0} has a nonempty
interior, then M is locally 1-type, which is a contradiction. Thus we can say that
the set {p € M|z2(p) = 0} has a empty interior and 0 is a principal curvature
of M. By Proposition 3.2 the mean curvature and the scalar curvture M is
constant. So every principal curvature of M is constant. Therefore M is an
open part of a spherical cylinder. O

Corollary 3.5. Let M be a complete oriented 2-type hypersurface in E"+!
whose position vector x is expressed as x = xg~+ T1 + T2, where xq is a constant
vector, and xz;(i = 1,2) are nonconstant vectors in E"tL such that Ax; = Nz,
Ai € R, A1 # Ao, Assume that (Ax,x — x9) = ¢ holds for a constant c. Then
M is a spherical cylinder.

Proof. In [4] it was shown that a connected and oriented complete hypersurface
with constant support function in Fuclidean space is either hyperplane or a
hypersphere or a spherical cylinder. By Proposition 3.2 M is of null 2-type
and its support function is constant. So we can conclude that M is a spherical
cylinder. O
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