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ON CHARACTERIZATIONS OF REAL
HYPERSURFACES WITH »-PARALLEL RICCI
OPERATORS IN A COMPLEX SPACE FORM

IN-BAE KiM, HYE JEONG PARK, AND WOON HA SOHN

ABSTRACT. We shall give a characterization of a real hypersurface
M in a complex space form My(c), ¢ # 0, whose Ricci operator
and structure tensor commute each other on the holomorphic dis-
tribution of M, and the Ricci operator is n-parallel.

0. Introduction

A complex n-dimensional Kaeherian manifold of constant holomor-
phic sectional curvature c is called a complez space form, which is de-
noted by M,(c). A complete and simply connected complex space form
consists of a complex projective space P, (C), a complex Euclidean space
C™ or a complex hyperbolic space H,(C), according to ¢ > 0, ¢ =0 or
c<0.

R. Takagi ([7]) classified all homogeneous real hypersurfaces in P,(C)
into six model spaces Ay, Aa, B, C, D and E (see also [8]). J. Berndt
([2])) has completed the classification of homogeneous real hypersurfaces
with principal structure vector fields in H,(C), which are divided into
the model spaces Ag, A1, A2 and B. A real hypersurface of type A; or
Az in P,(C) or that of Ay, A1 or Az in H,(C) is said to be of type A
for simplicity. )

We shall denote the induced almost contact metric structure of the
real hypersurface M in M, (c) by (&, (,),&,n). The Ricci operator of M
will be denoted by S, and the shape operator or the second fundamen-
tal tensor field of M by A. The holomorphic distribution Ty of a real
hypersurface M in M,(c) is defined by

TO(p) = {X € TP(M) | <X,£>P = O}’
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where T,,(M) is the tangent space of M at p € M. A (1,1) type tensor
field K of M is said to be n-parallel if ((VxK)Y,Z) = 0 for any vector
fields X, Y and Z in Tj.

Many authors have occupied themselves with the study of geometri-
cal properties of real hypersurfaces with n-parallel Ricci operators (see
[1], 3], [4], [5], [6] and [9]). Recently, Baikoussis ([1]) studied real hyper-
surfaces in M, (c) with certain conditions related to the Ricci operator
and the structure tensor field ¢. With conditions on the n-parallel Ricci
operator, Kimura and Maeda ([3]) and Suh ([6]) proved the following.

THEOREM A ([3], [6]). Let M be a real hypersurface in a complex
space form M,(c), ¢ # 0. Then the Ricci operator of M is n-parallel
and the structure vector field & is principal if and only if M is locally
congruent to one of the model spaces of type A or type B.

The purpose of this paper is to give some characterizations of real
hypersurfaces with a special n-parallel Ricci operator by applying The-
orem A. Namely, we shall prove the followings.

THEOREM 1. Let M be a real hypersurface in a complex space form
M., (c), ¢ # 0, n > 3. If M satisfies

(0.1) ((S¢—65)X,Y) =0,

(0.2) (VxS)Y = u(¢X,Y)¢

for any X and Y in Ty, where p is a scalar function on M, then M is
locally congruent to one of the model spaces of type A or type B.

THEOREM 2. Let M be a real hypersurface in a complex space form
My(c), ¢ # 0, n > 3. If M satisfies (0.1) and

(0.3) (VxS)Y = v(¢pAX, V)¢

for any X and Y in Ty, where v is a scalar function on M, then M is
locally congruent to one of the model spaces of type A or type B.

1. Preliminaries

Let M be a real hypersurface immersed in a complex space form
(Mp(c),{(,), J) of constant holomorphic sectional curvature ¢, and let N
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be a unit normal vector field on an open neighborhood in M. For a
local tangent vector field X on the neighborhood, the images of X and
N under the almost complex structure J of M, (c) can be expressed by

JX = ¢X +n(X)N, JN=-¢

where ¢ defines a linear transformation on the tangent space T,(M)
of M at any point p € M, and 1 and £ denote a 1-form and a unit
tangent vector field on the neighborhood respectively. Then, denoting
the Riemannian metric on M induced from the metric on M, (c) by the
same symbol (, ), it is easy to see that

(X, Y) +(9Y, X) =0, (£ X) =n(X)

for any tangent vector field X and Y on M. The collection (¢, {,),
&, n) is called an almost contact metric structure on M, and satisfies

P*X =-X +n(X)§, ¢£=0, n(@X)=0, =1,
(6X,9Y) = (X,Y) — n(X)n(Y).
Let V be the Riemannian connection with respect to the metric (,)

on M, and A be the shape operator in the direction of N on M. Then
we have

(1.1)

(12)  Vx&=0¢4AX, (Vxo)Y =n(Y)AX —(AX,Y)¢.

Since the ambient space is of constant holomorphic sectional curvature
¢, the equations of Gauss and Codazzi are given by

R(X,Y)Z :E{(Y, Z)X — (X, Z)Y + (oY, Z)$X
(1.3) — ($X, Z)¢Y — 2(¢X,Y)pZ}
+(AY, Z)AX — (AX, Z)AY,

c
(14)  (VxA)Y — (Vy A)X = - {n(X)gY —n(Y)pX ~ 2(¢X, Y)¢}
for any tangent vector fields X, Y and Z on M, where R is the Rie-
mannian curvature tensor of M. Then it is easily seen from (1.3) that

the Ricci operator S of M is expressed by

(1.5) SX = g{(Zn F1)X - 3n(X)E} + mAX — A%X,
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where m = traceA is the mean curvature of M, and the covariant de-
rivative of (1.5) is given by

(VxS)Y =~ Z{($AX, Ve +n(Y)$AX) + (Xm) AY
+m(VxA)Y — (VxA)AY — A(VxA)Y.

(1.6)

If the vector field $V & does not vanish, that is, the length 8 of ¢V £
is not equal to zero, then it is easily seen from (1.1) and (1.2) that

(1.7) A€ = af + U,

where o = (A§,€) and U = —%¢V§§. Therefore U is a unit tangent
vector field on M and U € Tg. If the vector field U can not be defined,
then we may consider 8 = 0 identically. Therefore A€ is always expressed
as in (1.7).

2. n-parallel Ricci operators

In this section, we assume that a real hypersurface M in M,,(c), ¢ # 0,
n > 3, satisfies (0.1) and has n-parallel Ricci operator S, that is,

(2.1) (VxS)Y, Z) =0

for any X, Y and Z in Ty. We also assume that 8 given in (1.7) does
not vanish on M. Then it is easy to see from (1.5) and (1.7) that (0.1)
is equivalent to

(22) (A% — $AD)X ~ m(A ~ pA)X = B((a — m)U + AU, X )¢

for any X in Tp. If we differentiate (0.1) covariantly and take account
of (0.1), (1.1), (1.2), (1.5), (1.7) and (2.1), then we obtain

(m — ) {{U,Y(AX, Z) + (U, Z){AX,Y)
+(oU, Y )(AX, ¢Z) + (¢U, Z)(AX, 8Y ) }
(2.3) — (AU, Y)(AX, Z) — (AU, Z)(AX,Y)
+ (AU, Y Y(AX, $Z) + (AU, $Z)(AX, ¢Y)
=0
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for any X, Y and Z in T, where we have used the equation

VxY = (VxY, 6+ (VxY)o
= —((}5AX, Y>£ -+ (ny)o, (ny)o e Ty.

Now we put
(2.4) (AU, U) = 7.

Then, substituting Y = Z = U and Y = U, Z = ¢U into (2.3) and
using (1.1), (1.7) and (2.4), we have

(2.5) (m — o —7)AU + (AU, ¢U) AgU = B(m — a — )¢,

(2.6) (AU, UNAU — (m — o — 7)AdU = B(AU, gU )¢

respectively. As a similar argument as the above, f we put X =Y =U
and X = ¢U, Y = U into (2.3), we obtain
@) (m —a — 29)AU — 2(AU, U )YpAU
' = B(m —a—27)§ —y(m — a)U — (m — a)(AU, ¢U)¢U,
(AU, oUYAU — (m — a — v) AU
(2.8) + (AgU, pU)PAU + (AU, pU)pAdU
=(AU, U)(BE + (m — o)U) + (m — a)(AgU, ¢U)pU

respectively.
Next we shall prove some Lemmas.

LEMMA 2.1. Let M be a real hypersurface with the n-parallel Ricci
operator S in a complex space form M,(c), ¢ # 0, n > 3. If it satisfies
(0.1) and S given in (1.7) does not vanish on M, then we have

m=a+vy and (AU,¢U)=0.

Proof. Comparing (2.5) with (2.6), we first have

{(m — a —7) + (AU, 9U)*}(AU — g¢) =0,
{(m — a — )% + (AU, pU)2}ApU = 0.
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Assume that there is a point p of M such that (m — a — 7)%+
(AU, ¢U)? # 0 at p. Then it follows from the above equations that

(2.9) AU = p¢, ApU =0
on an open neighborhood of p, which implies that
(2.10) v=(AU,U) =0, (AU,¢U)=0 and m—a #0.
Putting Z = U into (2.3) and using (2.9) and (2.10), we obtain
(AX,Y)=0
for any X and Y in Ty, which together with (2.9) shows that
A€ = o + BU, AX =pB(X,U) for XeTp

on an open neighborhood of p. The last two equations imply that m =
traceA = o, and hence this is a contradiction. O

By virtue of Lemma 2.1, the equations (2.7) and (2.8) are reduced to

(2.11) (AU — B¢ —~U) =0,
(2.12) (AgU, $U)($AU — 7¢U) = 0
respectively.

LEMMA 2.2. Under the same assumptions as in Lemma 2.1, we have
AU = B¢ +~U.

Proof. Assume that there is a point p in M such that AU # 8¢ + ~U

at p. Then it follows from (2.11) that v = 0, and from Lemma 2.1 that

m = a on an open neighborhood of p. Since we have AU # B¢, we see
from (1.1) and (2.12) that

(2.13) (AU, ¢U) = 0.
Putting X = U into (2.2) and using Lemma 2.1, we have

(2.14) AU — pA%U — a(AgU — ¢AU) = 0.
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If we multiply (2.14) by ¢U and make use of (2.13) and y = 0, then we
get

(2.15) [ A¢U|| = [lAU]|

on an open neighborhood of p. Multiplying (2.14) by U and using
Lemma 2.1, we obtain

(2.16) (AU, AU) = 0.

It is easy to see that A¢U € Tp. If we put X = A¢U and Z = ¢U
into (2.3) and take account of Lemma 2.1, ¥ = 0, m = « and (2.16),
then we obtain || A¢U||?{(AU,Y) = 0 for any Y in Tp, or equivalently

| AUIP(AU — B€) = 0.

This shows that ||A¢U|| = 0 and hence (2.15) gives rise to AU = 0 on
an open neighborhood of p. Therefore we get 5 = 0 by (1.7) and hence
it is a contradiction. |

By use of (1.7) and Lemmas 2.1 and 2.2, the relation (1.5) gives rise
to

(2.17) S€ = ( c+ oy — B)E.

We see from (1.1) and (2.17) that (S¢ — ¢S)¢ = 0, which together with
(0.1) implies that S¢ = ¢S on M, or equivalently

(2.18) 426~ $A? = (a+7)(Ad — $A)

on M. Differentiating (2.17) covariantly along X in T and using (1.1),
(1.2), (1.5), (2.17) and (2.18), we have

(VxS)E = X(ay — )€ + (ay = B°
for any X in Ty. It is easy to see that the above equation and (2.1)
imply
(2.19) (VxS)Y = ~(A3X — (a+ ) A%2X + (ay — 52
for any X and Y in Tg.

It follows from (1.7) and Lemma 2.2 that
(2.20) A% — (a+7)AE + (ay — 7)€ =0,
(2.21) AU — (a+7)AU + (ay — BHU = 0.
It is easily seen from (2.18) and (2.21) that
(2.22) A2QU — (o +7)ApU + (ay — 2)oU = 0.

n-—1

- Z)AX ~ (a+7)pAX + 94X

- 2)ax,6v)e
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3. Proof of theorems

In this section, we shall prove Theorems 1 and 2. Let M be a real
hypersurface in a complex space form M,(c), c# 0, n > 3.

Proof of Theorem 1. Assume that there is a point p of M such that
B # 0 at p. Then there exists an open neighborhood U of p such that
the local unit vector field U is defined on Y. Then, since (0.2) shows
that the Ricci operator S is n-parallel, we can compare (0.2) with (2.19)
and obtain

(A3X — (a0 + ) A2X + (ay — B2 — %c—)AX CuX,Y)=0

for any X and Y in Tj. Using (2.20), the above equation is rewritten as

(3.1) A%X — (a+7)A2X + (ay - 8% — %C)AX —puX = —%cﬁ(X, U¢

for any X in Tg.

Putting X = U into (3.1) and using (2.21) and Lemma 2.2, we can
get '

3c

(3:2) p==T

If we put X = ¢U into (3.1) and make use of (2.22) and (3.2), then we
have

(3.3) AQU = ~4U.

By substituting (3.3) into (2.22), we see that 8 = 0 on U, and it is a
contradiction.

Therefore 8 = 0 on the whole M and hence the structure vector field
€ is principal by (1.7). Thus our result follows from Theorem A. O

REMARK. C. Baikoussis proved in [1] that, a real hypersurface M in
My(c), ¢ # 0, n > 3, satisfies (0.1) and (0.2), where p is a constant,
then M is locally congruent to the model spaces of types A, B, C, D
and E in the case M, (c) = P,(C), and of types A and B in the case
M, (c) = H,(C). Therefore Theorem 1 is a generalization of this result.
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Proof of Theorem 2. Assume that there is a point p of M such that
B # 0 at p. Then there exists an open neighborhood U of p such that
B # 0 on U. Then, comparing (0.3) with (2.19) and using (1.1) and
(2.20), we have

A3X — (a+7)A2X 4 (ay — B2 —v — S)AX
(3.4) 3¢
=~ v+ Xyix, v

for any X in Tp. If we put X = U into (3.4) and take account of (2.21)
and Lemma 2.2, then we obtain

3
(3.5) y(v + Zc) =0
on Y. Putting X = ¢U into (3.4) and using (2.22), we also get
(3.6) v+ 546U =0

Thus we see from (3.5) and (3.6) that v + 32 = 0 on Y. In fact, if
v + 3¢ 3£ 0, then we have A¢U = 0 and y = 0 by (3.5) and (3.6), and
hence 8 = 0 by (2.22), which is a contradiction. Therefore the equations
(2.20) and (3.4) imply that

(3.7) A —(a+7)A 4+ (ay-p%)A=0

on . It is easy to see from (3.7) that any principal curvature X of M is
given by

(3.8) N0 /\=a+7ﬂ:\/(a—7)2—|—4ﬂ2
: ) 5 .

Let X and Y be eigenvectors of A at any point ¢ € U/ belonging
to the eigenspaces associated with A = 2ty (o;—'y)2+4ﬂ2 and A =
2Ty (CZ—'Y)QM'BZ respectively. Then X and Y are given by

X =266 - (a—7v—-V(a=7)>+462)U,

Y =(a—7-V(a—7)?+46%)¢+26U.
Since these vector fields show that ¢U is orthogonal to both X and Y, U
belongs to the eigenspace associated with A = 0 and hence ary—3% = 0 by
(2.22). Therefore we see from (3.8) that the nonzero principal curvature

of M is given by a ++. Since m = a +~, we have rankA < 1 on U and
it is impossible (for instance, see pp. 253 in [5]).

Thus we see that § = 0 on the whole M, that is, £ is principal. This
theorem follows from Theorem A. Ll
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