ON CHARACTERIZATIONS OF REAL HYPERSURFACES WITH η -PARALLEL RICCI OPERATORS IN A COMPLEX SPACE FORM

IN-BAE KIM, HYE JEONG PARK, AND WOON HA SOHN

ABSTRACT. We shall give a characterization of a real hypersurface M in a complex space form $M_n(c)$, $c \neq 0$, whose Ricci operator and structure tensor commute each other on the holomorphic distribution of M, and the Ricci operator is η -parallel.

0. Introduction

A complex n-dimensional Kaeherian manifold of constant holomorphic sectional curvature c is called a complex space form, which is denoted by $M_n(c)$. A complete and simply connected complex space form consists of a complex projective space $P_n(\mathbb{C})$, a complex Euclidean space \mathbb{C}^n or a complex hyperbolic space $H_n(\mathbb{C})$, according to c > 0, c = 0 or c < 0.

R. Takagi ([7]) classified all homogeneous real hypersurfaces in $P_n(\mathbb{C})$ into six model spaces A_1 , A_2 , B, C, D and E (see also [8]). J. Berndt ([2]) has completed the classification of homogeneous real hypersurfaces with principal structure vector fields in $H_n(\mathbb{C})$, which are divided into the model spaces A_0 , A_1 , A_2 and B. A real hypersurface of type A_1 or A_2 in $P_n(\mathbb{C})$ or that of A_0 , A_1 or A_2 in $H_n(\mathbb{C})$ is said to be of type A_1 for simplicity.

We shall denote the induced almost contact metric structure of the real hypersurface M in $M_n(c)$ by $(\phi, \langle, \rangle, \xi, \eta)$. The Ricci operator of M will be denoted by S, and the shape operator or the second fundamental tensor field of M by A. The holomorphic distribution T_0 of a real hypersurface M in $M_n(c)$ is defined by

$$T_0(p) = \{ X \in T_p(M) \mid \langle X, \xi \rangle_p = 0 \},$$

Received May 4, 2004.

²⁰⁰⁰ Mathematics Subject Classification: Primary 53C40; Secondary 53C15. Key words and phrases: real hypersurfaces, model spaces of type A or B.

where $T_p(M)$ is the tangent space of M at $p \in M$. A (1,1) type tensor field K of M is said to be η -parallel if $\langle (\nabla_X K)Y, Z \rangle = 0$ for any vector fields X, Y and Z in T_0 .

Many authors have occupied themselves with the study of geometrical properties of real hypersurfaces with η -parallel Ricci operators (see [1], [3], [4], [5], [6] and [9]). Recently, Baikoussis ([1]) studied real hypersurfaces in $M_n(c)$ with certain conditions related to the Ricci operator and the structure tensor field ϕ . With conditions on the η -parallel Ricci operator, Kimura and Maeda ([3]) and Suh ([6]) proved the following.

THEOREM A ([3], [6]). Let M be a real hypersurface in a complex space form $M_n(c)$, $c \neq 0$. Then the Ricci operator of M is η -parallel and the structure vector field ξ is principal if and only if M is locally congruent to one of the model spaces of type A or type B.

The purpose of this paper is to give some characterizations of real hypersurfaces with a special η -parallel Ricci operator by applying Theorem A. Namely, we shall prove the followings.

THEOREM 1. Let M be a real hypersurface in a complex space form $M_n(c)$, $c \neq 0$, $n \geq 3$. If M satisfies

$$\langle (S\phi - \phi S)X, Y \rangle = 0,$$

(0.2)
$$(\nabla_X S)Y = \mu \langle \phi X, Y \rangle \xi$$

for any X and Y in T_0 , where μ is a scalar function on M, then M is locally congruent to one of the model spaces of type A or type B.

THEOREM 2. Let M be a real hypersurface in a complex space form $M_n(c)$, $c \neq 0$, $n \geq 3$. If M satisfies (0.1) and

(0.3)
$$(\nabla_X S)Y = \nu \langle \phi AX, Y \rangle \xi$$

for any X and Y in T_0 , where ν is a scalar function on M, then M is locally congruent to one of the model spaces of type A or type B.

1. Preliminaries

Let M be a real hypersurface immersed in a complex space form $(M_n(c), \langle , \rangle, J)$ of constant holomorphic sectional curvature c, and let N

be a unit normal vector field on an open neighborhood in M. For a local tangent vector field X on the neighborhood, the images of X and N under the almost complex structure J of $M_n(c)$ can be expressed by

$$JX = \phi X + \eta(X)N, \qquad JN = -\xi,$$

where ϕ defines a linear transformation on the tangent space $T_p(M)$ of M at any point $p \in M$, and η and ξ denote a 1-form and a unit tangent vector field on the neighborhood respectively. Then, denoting the Riemannian metric on M induced from the metric on $M_n(c)$ by the same symbol \langle , \rangle , it is easy to see that

$$\langle \phi X, Y \rangle + \langle \phi Y, X \rangle = 0, \qquad \langle \xi, X \rangle = \eta(X)$$

for any tangent vector field X and Y on M. The collection $(\phi, \langle,\rangle, \xi, \eta)$ is called an almost contact metric structure on M, and satisfies

(1.1)
$$\begin{aligned} \phi^2 X &= -X + \eta(X)\xi, & \phi \xi &= 0, & \eta(\phi X) &= 0, & \eta(\xi) &= 1, \\ \langle \phi X, \phi Y \rangle &= \langle X, Y \rangle - \eta(X)\eta(Y). & \end{aligned}$$

Let ∇ be the Riemannian connection with respect to the metric \langle , \rangle on M, and A be the shape operator in the direction of N on M. Then we have

(1.2)
$$\nabla_X \xi = \phi A X, \quad (\nabla_X \phi) Y = \eta(Y) A X - \langle A X, Y \rangle \xi.$$

Since the ambient space is of constant holomorphic sectional curvature c, the equations of Gauss and Codazzi are given by

(1.3)
$$R(X,Y)Z = \frac{c}{4} \{ \langle Y, Z \rangle X - \langle X, Z \rangle Y + \langle \phi Y, Z \rangle \phi X - \langle \phi X, Z \rangle \phi Y - 2 \langle \phi X, Y \rangle \phi Z \} + \langle AY, Z \rangle AX - \langle AX, Z \rangle AY,$$

$$(1.4) \quad (\nabla_X A)Y - (\nabla_Y A)X = \frac{c}{4} \{ \eta(X)\phi Y - \eta(Y)\phi X - 2\langle \phi X, Y \rangle \xi \}$$

for any tangent vector fields X, Y and Z on M, where R is the Riemannian curvature tensor of M. Then it is easily seen from (1.3) that the Ricci operator S of M is expressed by

(1.5)
$$SX = \frac{c}{4} \{ (2n+1)X - 3\eta(X)\xi \} + mAX - A^2X,$$

where m = traceA is the mean curvature of M, and the covariant derivative of (1.5) is given by

(1.6)
$$(\nabla_X S)Y = -\frac{3c}{4} \{ \langle \phi AX, Y \rangle \xi + \eta(Y)\phi AX \} + (Xm)AY + m(\nabla_X A)Y - (\nabla_X A)AY - A(\nabla_X A)Y.$$

If the vector field $\phi \nabla_{\xi} \xi$ does not vanish, that is, the length β of $\phi \nabla_{\xi} \xi$ is not equal to zero, then it is easily seen from (1.1) and (1.2) that

$$(1.7) A\xi = \alpha \xi + \beta U,$$

where $\alpha = \langle A\xi, \xi \rangle$ and $U = -\frac{1}{\beta}\phi\nabla_{\xi}\xi$. Therefore U is a unit tangent vector field on M and $U \in T_0$. If the vector field U can not be defined, then we may consider $\beta = 0$ identically. Therefore $A\xi$ is always expressed as in (1.7).

2. η -parallel Ricci operators

In this section, we assume that a real hypersurface M in $M_n(c)$, $c \neq 0$, $n \geq 3$, satisfies (0.1) and has η -parallel Ricci operator S, that is,

$$\langle (\nabla_X S)Y, Z \rangle = 0$$

for any X, Y and Z in T_0 . We also assume that β given in (1.7) does not vanish on M. Then it is easy to see from (1.5) and (1.7) that (0.1) is equivalent to

$$(2.2) \quad (A^2\phi - \phi A^2)X - m(A\phi - \phi A)X = \beta \langle (\alpha - m)U + AU, \phi X \rangle \xi$$

for any X in T_0 . If we differentiate (0.1) covariantly and take account of (0.1), (1.1), (1.2), (1.5), (1.7) and (2.1), then we obtain

$$(m - \alpha)\{\langle U, Y \rangle \langle AX, Z \rangle + \langle U, Z \rangle \langle AX, Y \rangle + \langle \phi U, Y \rangle \langle AX, \phi Z \rangle + \langle \phi U, Z \rangle \langle AX, \phi Y \rangle \}$$

$$(2.3) \qquad - \langle AU, Y \rangle \langle AX, Z \rangle - \langle AU, Z \rangle \langle AX, Y \rangle + \langle AU, \phi Y \rangle \langle AX, \phi Z \rangle + \langle AU, \phi Z \rangle \langle AX, \phi Y \rangle$$

$$= 0$$

for any X, Y and Z in T_0 , where we have used the equation

$$\nabla_X Y = \langle \nabla_X Y, \xi \rangle \xi + (\nabla_X Y)_0$$

= $-\langle \phi A X, Y \rangle \xi + (\nabla_X Y)_0, \quad (\nabla_X Y)_0 \in T_0.$

Now we put

$$\langle AU, U \rangle = \gamma.$$

Then, substituting Y=Z=U and Y=U, $Z=\phi U$ into (2.3) and using (1.1), (1.7) and (2.4), we have

$$(2.5) (m - \alpha - \gamma)AU + \langle AU, \phi U \rangle A\phi U = \beta(m - \alpha - \gamma)\xi,$$

(2.6)
$$\langle AU, \phi U \rangle AU - (m - \alpha - \gamma) A\phi U = \beta \langle AU, \phi U \rangle \xi$$

respectively. As a similar argument as the above, if we put X = Y = U and $X = \phi U$, Y = U into (2.3), we obtain

(2.7)
$$(m - \alpha - 2\gamma)AU - 2\langle AU, \phi U \rangle \phi AU$$

$$= \beta(m - \alpha - 2\gamma)\xi - \gamma(m - \alpha)U - (m - \alpha)\langle AU, \phi U \rangle \phi U,$$

(2.8)
$$\langle AU, \phi U \rangle AU - (m - \alpha - \gamma) A\phi U + \langle A\phi U, \phi U \rangle \phi AU + \langle AU, \phi U \rangle \phi A\phi U = \langle AU, \phi U \rangle (\beta \xi + (m - \alpha)U) + (m - \alpha) \langle A\phi U, \phi U \rangle \phi U$$

respectively.

Next we shall prove some Lemmas.

LEMMA 2.1. Let M be a real hypersurface with the η -parallel Ricci operator S in a complex space form $M_n(c)$, $c \neq 0$, $n \geq 3$. If it satisfies (0.1) and β given in (1.7) does not vanish on M, then we have

$$m = \alpha + \gamma$$
 and $\langle AU, \phi U \rangle = 0$.

Proof. Comparing (2.5) with (2.6), we first have

$$\{(m - \alpha - \gamma)^2 + \langle AU, \phi U \rangle^2\}(AU - \beta \xi) = 0,$$

$$\{(m - \alpha - \gamma)^2 + \langle AU, \phi U \rangle^2\}A\phi U = 0.$$

Assume that there is a point p of M such that $(m - \alpha - \gamma)^2 + \langle AU, \phi U \rangle^2 \neq 0$ at p. Then it follows from the above equations that

$$(2.9) AU = \beta \xi, A\phi U = 0$$

on an open neighborhood of p, which implies that

(2.10)
$$\gamma = \langle AU, U \rangle = 0, \quad \langle AU, \phi U \rangle = 0 \text{ and } m - \alpha \neq 0.$$

Putting Z = U into (2.3) and using (2.9) and (2.10), we obtain

$$\langle AX, Y \rangle = 0$$

for any X and Y in T_0 , which together with (2.9) shows that

$$A\xi = \alpha \xi + \beta U$$
, $AX = \beta \langle X, U \rangle \xi$ for $X \in T_0$

on an open neighborhood of p. The last two equations imply that $m = trace A = \alpha$, and hence this is a contradiction.

By virtue of Lemma 2.1, the equations (2.7) and (2.8) are reduced to

(2.11)
$$\gamma(AU - \beta\xi - \gamma U) = 0,$$

$$(2.12) \qquad \langle A\phi U, \phi U \rangle (\phi AU - \gamma \phi U) = 0$$

respectively.

LEMMA 2.2. Under the same assumptions as in Lemma 2.1, we have

$$AU = \beta \xi + \gamma U.$$

Proof. Assume that there is a point p in M such that $AU \neq \beta\xi + \gamma U$ at p. Then it follows from (2.11) that $\gamma = 0$, and from Lemma 2.1 that $m = \alpha$ on an open neighborhood of p. Since we have $AU \neq \beta\xi$, we see from (1.1) and (2.12) that

$$\langle A\phi U, \phi U \rangle = 0.$$

Putting X = U into (2.2) and using Lemma 2.1, we have

(2.14)
$$A^{2}\phi U - \phi A^{2}U - \alpha(A\phi U - \phi AU) = 0.$$

If we multiply (2.14) by ϕU and make use of (2.13) and $\gamma = 0$, then we get

on an open neighborhood of p. Multiplying (2.14) by U and using Lemma 2.1, we obtain

$$\langle A\phi U, AU \rangle = 0.$$

It is easy to see that $A\phi U \in T_0$. If we put $X = A\phi U$ and $Z = \phi U$ into (2.3) and take account of Lemma 2.1, $\gamma = 0$, $m = \alpha$ and (2.16), then we obtain $\|A\phi U\|^2 \langle AU, Y \rangle = 0$ for any Y in T_0 , or equivalently

$$||A\phi U||^2(AU - \beta\xi) = 0.$$

This shows that $||A\phi U|| = 0$ and hence (2.15) gives rise to AU = 0 on an open neighborhood of p. Therefore we get $\beta = 0$ by (1.7) and hence it is a contradiction.

By use of (1.7) and Lemmas 2.1 and 2.2, the relation (1.5) gives rise to

(2.17)
$$S\xi = (\frac{n-1}{2}c + \alpha\gamma - \beta^2)\xi.$$

We see from (1.1) and (2.17) that $(S\phi - \phi S)\xi = 0$, which together with (0.1) implies that $S\phi = \phi S$ on M, or equivalently

(2.18)
$$A^2\phi - \phi A^2 = (\alpha + \gamma)(A\phi - \phi A)$$

on M. Differentiating (2.17) covariantly along X in T_0 and using (1.1), (1.2), (1.5), (2.17) and (2.18), we have

$$(\nabla_X S)\xi = X(\alpha\gamma - \beta^2)\xi + (\alpha\gamma - \beta^2 - \frac{3c}{4})\phi AX - (\alpha + \gamma)\phi A^2X + \phi A^3X$$

for any X in T_0 . It is easy to see that the above equation and (2.1) imply

(2.19)
$$(\nabla_X S)Y = -\langle A^3 X - (\alpha + \gamma)A^2 X + (\alpha \gamma - \beta^2 - \frac{3c}{4})AX, \phi Y \rangle \xi$$
 for any X and Y in T_0 .

It follows from (1.7) and Lemma 2.2 that

$$(2.20) A2\xi - (\alpha + \gamma)A\xi + (\alpha\gamma - \beta^{2})\xi = 0,$$

(2.21)
$$A^2U - (\alpha + \gamma)AU + (\alpha\gamma - \beta^2)U = 0.$$

It is easily seen from (2.18) and (2.21) that

(2.22)
$$A^2\phi U - (\alpha + \gamma)A\phi U + (\alpha\gamma - \beta^2)\phi U = 0.$$

3. Proof of theorems

In this section, we shall prove Theorems 1 and 2. Let M be a real hypersurface in a complex space form $M_n(c)$, $c \neq 0$, $n \geq 3$.

Proof of Theorem 1. Assume that there is a point p of M such that $\beta \neq 0$ at p. Then there exists an open neighborhood \mathcal{U} of p such that the local unit vector field U is defined on \mathcal{U} . Then, since (0.2) shows that the Ricci operator S is η -parallel, we can compare (0.2) with (2.19) and obtain

$$\langle A^3X - (\alpha + \gamma)A^2X + (\alpha\gamma - \beta^2 - \frac{3c}{4})AX - \mu X, Y \rangle = 0$$

for any X and Y in T_0 . Using (2.20), the above equation is rewritten as

$$(3.1) A^{3}X - (\alpha + \gamma)A^{2}X + (\alpha\gamma - \beta^{2} - \frac{3c}{4})AX - \mu X = -\frac{3}{4}c\beta\langle X, U \rangle \xi$$

for any X in T_0 .

Putting X=U into (3.1) and using (2.21) and Lemma 2.2, we can get

$$\mu = -\frac{3c}{4}\gamma.$$

If we put $X = \phi U$ into (3.1) and make use of (2.22) and (3.2), then we have

$$(3.3) A\phi U = \gamma \phi U.$$

By substituting (3.3) into (2.22), we see that $\beta = 0$ on \mathcal{U} , and it is a contradiction.

Therefore $\beta = 0$ on the whole M and hence the structure vector field ξ is principal by (1.7). Thus our result follows from Theorem A.

REMARK. C. Baikoussis proved in [1] that, a real hypersurface M in $M_n(c)$, $c \neq 0$, $n \geq 3$, satisfies (0.1) and (0.2), where μ is a constant, then M is locally congruent to the model spaces of types A, B, C, D and E in the case $M_n(c) = P_n(\mathbb{C})$, and of types A and B in the case $M_n(c) = H_n(\mathbb{C})$. Therefore Theorem 1 is a generalization of this result.

Proof of Theorem 2. Assume that there is a point p of M such that $\beta \neq 0$ at p. Then there exists an open neighborhood \mathcal{U} of p such that $\beta \neq 0$ on \mathcal{U} . Then, comparing (0.3) with (2.19) and using (1.1) and (2.20), we have

(3.4)
$$A^{3}X - (\alpha + \gamma)A^{2}X + (\alpha\gamma - \beta^{2} - \nu - \frac{3c}{4})AX$$
$$= -\beta(\nu + \frac{3c}{4})\langle X, U \rangle \xi$$

for any X in T_0 . If we put X = U into (3.4) and take account of (2.21) and Lemma 2.2, then we obtain

$$(3.5) \qquad \qquad \gamma(\nu + \frac{3c}{4}) = 0$$

on \mathcal{U} . Putting $X = \phi U$ into (3.4) and using (2.22), we also get

$$(3.6) \qquad (\nu + \frac{3c}{4})A\phi U = 0.$$

Thus we see from (3.5) and (3.6) that $\nu + \frac{3c}{4} = 0$ on \mathcal{U} . In fact, if $\nu + \frac{3c}{4} \neq 0$, then we have $A\phi U = 0$ and $\gamma = 0$ by (3.5) and (3.6), and hence $\beta = 0$ by (2.22), which is a contradiction. Therefore the equations (2.20) and (3.4) imply that

(3.7)
$$A^{3} - (\alpha + \gamma)A^{2} + (\alpha\gamma - \beta^{2})A = 0$$

on \mathcal{U} . It is easy to see from (3.7) that any principal curvature λ of M is given by

(3.8)
$$\lambda = 0, \qquad \lambda = \frac{\alpha + \gamma \pm \sqrt{(\alpha - \gamma)^2 + 4\beta^2}}{2}.$$

Let X and Y be eigenvectors of A at any point $q \in \mathcal{U}$ belonging to the eigenspaces associated with $\lambda = \frac{\alpha + \gamma + \sqrt{(\alpha - \gamma)^2 + 4\beta^2}}{2}$ and $\lambda = \frac{\alpha + \gamma - \sqrt{(\alpha - \gamma)^2 + 4\beta^2}}{2}$ respectively. Then X and Y are given by

$$X = 2\beta \xi - (\alpha - \gamma - \sqrt{(\alpha - \gamma)^2 + 4\beta^2})U,$$

$$Y = (\alpha - \gamma - \sqrt{(\alpha - \gamma)^2 + 4\beta^2})\xi + 2\beta U.$$

Since these vector fields show that ϕU is orthogonal to both X and Y, ϕU belongs to the eigenspace associated with $\lambda=0$ and hence $\alpha\gamma-\beta^2=0$ by (2.22). Therefore we see from (3.8) that the nonzero principal curvature of M is given by $\alpha+\gamma$. Since $m=\alpha+\gamma$, we have $rankA\leq 1$ on $\mathcal U$ and it is impossible (for instance, see pp. 253 in [5]).

Thus we see that $\beta = 0$ on the whole M, that is, ξ is principal. This theorem follows from Theorem A.

References

- [1] C. Baikoussis, A characterization of real hypersurfaces in complex space forms in terms of the Ricci tensor, Canad. Math. Bull. 40 (1997), no. 3, 257–265.
- [2] J. Berndt, Real hypersurfaces with constant principal curvatures in complex hyperbolic space, J. Reine Angew Math. 395 (1989), 132–141.
- [3] M. Kimura and S. Maeda, On real hypersurfaces of a complex projective space, Math. Z. 202 (1989), no. 3, 299-311.
- [4] _____, Characterizations of geodesic hyperspheres in a complex projective space in terms of Ricci tensors, Yokohama Math. J. 40 (1992), no. 1, 35–43.
- [5] R. Niebergall and P. J. Ryan, Real hypersurfaces in complex space forms: in Tight and taut submanifolds,, Math. Sci. Res. Inst. Publ., 32., 233-305 Publications, Cambridge, 1997.
- [6] Y. J. Suh, On real hypersurfaces of a complex space form with η-parallel Ricci tensor, Tsukuba J. Math. 14 (1990), no. 1, 27–37.
- [7] R. Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math. 10 (1973), 495–506.
- [8] R. Takagi, I.-B. Kim and B. H. Kim, The rigidity for real hypersurfaces in a complex projective space, Tohoku Math. J. (2) 50 (1998), no. 4, 531-536.
- [9] T. Taniguchi, Characterizations of real hypersurfaces of a complex hyperbolic space in terms of Ricci tensor and holomorphic distribution, Tsukuba J. Math. 18 (1994), no. 2, 469–482.

DEPARTMENT OF MATHEMATICS, HANKUK UNIVERSITY OF FOREIGN STUDIES, SEOUL 130-791, KOREA

E-mail: ibkim@hufs.ac.kr chang@kangnung.ac.kr whasohn@hanmail.net