• Title/Summary/Keyword: 2-regular

Search Result 4,970, Processing Time 0.033 seconds

MONOIDS OVER WHICH ALL REGULAR RIGHT S-ACTS ARE WEAKLY INJECTIVE

  • Moon, Eunho L.
    • Korean Journal of Mathematics
    • /
    • v.20 no.4
    • /
    • pp.423-431
    • /
    • 2012
  • There have been some study characterizing monoids by homological classification using the properties around projectivity, injectivity, or regularity of acts. In particular Kilp and Knauer([4]) have analyzed monoids over which all acts with one of the properties around projectivity or injectivity are regular. However Kilp and Knauer left over problems of characterization of monoids over which all regular right S-acts are (weakly) at, (weakly) injective or faithful. Among these open problems, Liu([3]) proved that all regular right S-acts are (weakly) at if and only if es is a von Neumann regular element of S for all $s{\in}S$ and $e^2=e{\in}T$, and that all regular right S-acts are faithful if and only if all right ideals eS, $e^2=e{\in}T$, are faithful. But it still remains an open question to characterize over which all regular right S-acts are weakly injective or injective. Hence the purpose of this study is to investigate the relations between regular right S-acts and weakly injective right S-acts, and then characterize the monoid over which all regular right S-acts are weakly injective.

CYCLES THROUGH A GIVEN SET OF VERTICES IN REGULAR MULTIPARTITE TOURNAMENTS

  • Volkmann, Lutz;Winzen, Stefan
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.3
    • /
    • pp.683-695
    • /
    • 2007
  • A tournament is an orientation of a complete graph, and in general a multipartite or c-partite tournament is an orientation of a complete c-partite graph. In a recent article, the authors proved that a regular c-partite tournament with $r{\geq}2$ vertices in each partite set contains a cycle with exactly r-1 vertices from each partite set, with exception of the case that c=4 and r=2. Here we will examine the existence of cycles with r-2 vertices from each partite set in regular multipartite tournaments where the r-2 vertices are chosen arbitrarily. Let D be a regular c-partite tournament and let $X{\subseteq}V(D)$ be an arbitrary set with exactly 2 vertices of each partite set. For all $c{\geq}4$ we will determine the minimal value g(c) such that D-X is Hamiltonian for every regular multipartite tournament with $r{\geq}g(c)$.

REGULAR BRANCHED COVERING SPACES AND CHAOTIC MAPS ON THE RIEMANN SPHERE

  • Lee, Joo-Sung
    • Communications of the Korean Mathematical Society
    • /
    • v.19 no.3
    • /
    • pp.507-517
    • /
    • 2004
  • Let (2,2,2,2) be ramification indices for the Riemann sphere. It is well known that the regular branched covering map corresponding to this, is the Weierstrass P function. Lattes [7] gives a rational function R(z)= ${\frac{z^4+{\frac{1}{2}}g2^{z}^2+{\frac{1}{16}}g{\frac{2}{2}}$ which is chaotic on ${\bar{C}}$ and is induced by the Weierstrass P function and the linear map L(z) = 2z on complex plane C. It is also known that there exist regular branched covering maps from $T^2$ onto ${\bar{C}}$ if and only if the ramification indices are (2,2,2,2), (2,4,4), (2,3,6) and (3,3,3), by the Riemann-Hurwitz formula. In this paper we will construct regular branched covering maps corresponding to the ramification indices (2,4,4), (2,3,6) and (3,3,3), as well as chaotic maps induced by these regular branched covering maps.

Rings which satisfy the Property of Inserting Regular Elements at Zero Products

  • Kim, Hong Kee;Kwak, Tai Keun;Lee, Yang;Seo, Yeonsook
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.2
    • /
    • pp.307-318
    • /
    • 2020
  • This article concerns the class of rings which satisfy the property of inserting regular elements at zero products, and rings with such property are called regular-IFP. We study the structure of regular-IFP rings in relation to various ring properties that play roles in noncommutative ring theory. We investigate conditions under which the regular-IFPness pass to polynomial rings, and equivalent conditions to the regular-IFPness.

ON NEAR-RINGS WITH STRONG REGULARITY

  • Cho, Yong-Uk
    • The Pure and Applied Mathematics
    • /
    • v.17 no.2
    • /
    • pp.131-136
    • /
    • 2010
  • Throught this paper, we will investigate some properties of left regular and strongly reduced near-rings. Mason introduced the notion of left regularity and he characterized left regular zero-symmetric unital near-rings. Also, this concept have been studied by several authors. The purpose of this paper is to find some characterizations of the strong reducibility in near-rings, and the strong regularity in near-rings which are closely related with strongly reduced near-rings.

THE CONSTRUCTION OF RELATIVE F-REGULAR RELATIONS

  • Song, Hyungsoo
    • Korean Journal of Mathematics
    • /
    • v.9 no.2
    • /
    • pp.123-128
    • /
    • 2001
  • Given a homomorphism ${\Pi}:X{\rightarrow}Y$, with Y minimal, we will introduce the concept of a relative (to ${\Pi}$) F-regular relation which generalize the notions of F-proximality, F-regularity and relative F-proximality, and will study its properties.

  • PDF

ON STRONG REGULARITY AND RELATED CONCEPTS

  • Cho, Yong-Uk
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.509-513
    • /
    • 2010
  • In this paper, we will investigate some properties of strongly reduced near-rings. The purpose of this paper is to find more characterizations of the strong regularity in near-rings, which are closely related with strongly reduced near-rings.

GROUP ACTIONS IN A UNIT-REGULAR RING WITH COMMUTING IDEMPOTENTS

  • Han, Jun-Cheol
    • East Asian mathematical journal
    • /
    • v.25 no.4
    • /
    • pp.433-440
    • /
    • 2009
  • Let R be a ring with unity, X the set of all nonzero, nonunits of R and G the group of all units of R. We will consider some group actions on X by G, the left (resp. right) regular action and the conjugate action. In this paper, by investigating these group actions we can have some results as follows: First, if E(R), the set of all nonzero nonunit idempotents of a unit-regular ring R, is commuting, then $o_{\ell}(x)\;=\;o_r(x)$, $o_c(x)\;=\;\{x\}$ for all $x\;{\in}\;X$ where $o_{\ell}(x)$ (resp. $o_r(x)$, $o_c(x)$) is the orbit of x under the left regular (resp. right regular, conjugate) action on X by G and R is abelian regular. Secondly, if R is a unit-regular ring with unity 1 such that G is a cyclic group and $2\;=\;1\;+\;1\;{\in}\;G$, then G is a finite group. Finally, if R is an abelian regular ring such that G is an abelian group, then R is a commutative ring.