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ON STRONG REGULARITY AND RELATED CONCEPTS

YONG UK CHO

ABSTRACT. In this paper, we will investigate some properties of strongly
reduced near-rings. The purpose of this paper is to find more characteriza-
tions of the strong regularity in near-rings, which are closely related with
strongly reduced near-rings.
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1. Introduction

In this paper, our near-ring R is fixed as a right version, that is, a near-ring
R is an algebraic system (R, +, -) with two binary operations + and - such that
(R, +) is a group (not necessarily abelian) with neutral element 0, (R, -) is a
semigroup and (a + b)c = ac+ be for all a,b,cin R.. If R has a unity 1, then R
is called unital. A near-ring R with the extra axiom a0 = 0 for all @ € R is said
to be zero symmetric.

Mason [3] introduced the notion of left regularity and characterized left regular
zero-symmetric unital near-rings. Also, several authors ([1], [4], [6] etc.) studied
them.

We will use the following notations: Given a near-ring R, Rg = {a € R| a0 =
0} which is called the zero symmetric part of R, R. = {a € R | a0 = a} which is
called the constant part of R.

Obviously, we see that Ry and R, are subnear-rings of R, but R, is a semi-
group under multiplication. Clearly, near-ring R is zero symmetric, in case
R = Ry also, in case R = R, R is called a constant near-ring.

For other notations and basic results, we shall refer to Pilz [5].
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2. Results

A near-ring R is said to be left reqular if, for each a € R, there exists € R
such that @ = za?. Right regularity is defined in a symmetric way. Also, we can
generalize these concepts as following.

A near-ring R is called strongly left reqular if R is left regular and regular, sim-
ilarly, we can define strongly right regular. A strongly left regular and strongly
right regular near-ring is called strongly regular near-ring. Equivalently, left and
right regularity implies strong regularity. Also, the concepts of left, strongly left,
strongly right and strong regularities are all equivalent conditions [2].

An idempotent element e? = e in R is called left semi-central if ea = eae for
each a € R. Similarly, right semi-centrality is defined in a symmetric way. A
near-ring in which every idempotent is left semi-central is called left semi-central.

We say that R is reduced if R has no nonzero nilpotent elements, that is, for
each a in R, a™ = 0, for some positive integer n implies a = 0. In ring theory,
McCoy proved that R is reduced if and only if for each @ in R, a? = 0 implies
a = 0. A near-ring R is said to be strongly reduced if, for a € R, a? € R, implies
a € R, that is a®0 = a? implies a0 = a.

Obviously, we get the following lemma 1 by the concept of strong reducibility.

Lemma 2.1. (1) Ewvery strongly regular near-ring is strongly reduced.
(2) Every right regular near-ring is strongly reduced.
(3) Every commutative integral near-ring is strongly reduced.

Lemma 2.2. Let R be a strongly reduced near-ring. Then we have the following
conditions.

(1) If for any a,b € R with ab € R, then ba € R., and Vz € R, azb, bra €
R.. Furthermore, ab™ € R, implies ab € R, for each positive integer n.

(2) If for any a,b € R with ab = 0, then ba = b0 = (ba)?. Moreover, ab™ = 0
implies ab = 0, for any positive integer n.

Proof. (1) Suppose that ab € R.. Then (ba)? = baba = bab = bab0 € R.. Since
R is strongly reduced, we have ba € R,.

Next, we see that zba € R, for each z € R, whence (azb)? € R.. By the strong
reducibility of R, we obtain axb € R, for each z € R. Also, since ba € R., we
obtain bxa € R, for each z € R.

Furthermore, assume that ab™ € R.. Then using the first part of this (1),
(ab)™ € R,. Since R is strongly reduced, we see ab € R..

(2) Assume that ab = 0. Then ab € R, by (1). Hence (ba)? = baba = b0 € R..
Hence ba € R.. Therefore we obtain that ba = (ba)? = b0. Moreover, suppose
that ab™ = 0. Then ab € R, by the last part of (1), so that ab = abb"~! = ab™ =
0.

Lemma 2.3. Let R be a strongly reduced near-ring. If for any a,b € R with
ab =0 and a? = a0, then a = 0.
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Proof. Suppose that for any a,b € R with ab =0 and a® = a0. Then a® = a0 €
R.. Strong reducibility implies that @ € R.. Hence we obtain that a = a0 =
alb = ab = 0.

From this Lemma 3, we have the following important statement.
Corollary 2.4. Every strongly reduced near-ring is reduced.

By Reddy and Murty [6], we say that a near-ring R has the property (*) if it
satisfies the conditions:

(i) for any a,b € R, ab = 0 implies ba = b0.

(ii) for a € R, a® = a? implies a? = a.

Here, clearly we see that strong reducibility is equivalent to the condition (ii)
and strong reducibility implies condition (i) by Lemma 2 (2).

According to the Lemmas 1, 2 and 3, we have the following valuable corollar-
ies.

Corollary 2.5. Let R be a left (or right) reqular near-ring. If for any a, b€ R
with ab = 0, then (ba)™ = b0, for all positive integer n. In particular, ba = b0.

Corollary 2.6. Let R be a left (or right) regular near-ring. If for any a,b € R
with ab =0 and a® = a0, then a = 0.

Now, we state another basic properties of strongly reduced near-rings.

Clearly, if R is a zero-symmetric near-ring, then R is strongly reduced if and
only if R is reduced. The following example shows that a reduced near-ring is
not necessarily strongly reduced.

Example 2.7. Let Z¢ = {0,1,2,3,4,5} with addition modulo 6 and define
multiplication as follows:

| 01 23 45
01000000
1331311
210020 2 2
313333233
410040 4 4
51335355

Obviously this is a reduced near-ring. The constant part of Zg is {0, 3}. Since
12 = 3 is a constant element but 1 is not, this near-ring is not strongly reduced.

Theorem 2.8. The following statements are equivalent for a near-ring R:
(1) R is strongly reduced.
(2) Fora € R, a® = a? implies a® = a.
(3) If a®! = za™*! for a,x € R and some nonnegative integer n, then
a=2za=az.
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Proof. (1) = (2). Assume that a® = a2. Then (a®—a)a = 0, whence a(a®>—a) =
a0 € R. by Lemma 2 (2). Then (a® — a)a? = (a® — a?)a = 0a = 0. Again by
Lemma 2 (2), a®(a® —a) = a?0 € R... Hence (a® —a)? = a®(a® —a) —a(a? —a) =
a?0—a0 = (a® —a)0 € R,. This implies a? —a € R,. Hence a? —a = (a2 —a)0 =
(a®> —a)a = 0.

(2) = (1). Assume a® € R.. Then a® = a%a = a®. By hypothesis, this
implies @ = a? € R,.

(1) = (3). Suppose a"*! = za™*! for some n > 0. Then (a — za)a” = 0.
Hence (a — za)a = 0 by Lemma 2 (2), and so (a — za)? € R, by Lemma 2 (1).
Since R is strongly reduced, we have a —za € R.. Then a —2za = (a —za)a = 0,
that is @ = za. Now (a — az)a = a® —aza = a® — a? = 0 € R,. Hence
(a —az)?® = a(a — az) — ax(a — ax) € R, by Lemma 2 (1), and so @ — az € R,.
Therefore a — ax = (a — az)a = 0.

(3) = (2). This is obvious.

The following is a generalization of [6, Theorem 3].

Theorem 2.9. Let R be a strongly reduced near-ring and let a,z € R. If
a®™ = za™*! for some positive integer n, then a = za® = aza and ar = za.

Proof. Assume that a” = za™*! for some n > 1. By Proposition 8 (3), a =
za® = aza. Then (ax — za)a = 0. Hence, by Lemma 2 (2), (az — za)? =
az(ax — za) — za(ax — za) € R.. Since R is strongly reduced, az — za € Re.

Hence ax — za = (az — za)a = 0.
Here we give some characterizations of strongly regular near-rings.

Theorem 2.10. Let R be an arbitrary near-ring. The following statements are
equivalent:

(1) R is left regular.

(2) R is strongly left reqular.

(3) R is strongly reqular.

(4) R is strongly right regqular.
(5) R 1is left semi-central reqular.
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