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ON NEAR-RINGS WITH STRONG REGULARITY

Yong Uk Cho

Abstract. Throught this paper, we will investigate some properties of left regular
and strongly reduced near-rings.

Mason introduced the notion of left regularity and he characterized left regular
zero-symmetric unital near-rings. Also, this concept have been studied by several
authors.

The purpose of this paper is to find some characterizations of the strong re-
ducibility in near-rings, and the strong regularity in near-rings which are closely
related with strongly reduced near-rings.

1. Introduction

In this paper, our near-ring R is fixed as a right version, that is, a near-ring R is
an algebraic system (R, +, ·) with two binary operations + and · such that (R, +)
is a group (not necessarily abelian) with neutral element 0, (R, ·) is a semigroup and
(a + b)c = ac + bc for all a, b, c in R.. If R has a unity 1, then R is called unital. A
near-ring R with the extra axiom a0 = 0 for all a ∈ R is said to be zero symmetric.
An element d in R is called distributive if d(a + b) = da + db for all a and b in R.

Mason [3] introduced the notion of left regularity and characterized left regular
zero-symmetric unital near-rings. Also, several authors ([1], [3], [4], [6] etc.) studied
them.

We will use the following notations: Given a near-ring R, R0 = {a ∈ R | a0 = 0}
which is called the zero symmetric part of R, Rc = {a ∈ R | a0 = a} which is called
the constant part of R.

For other notations and basic results, we shall refer to Pilz [5].
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2. Results

A near-ring R is said to be left regular if, for each a ∈ R, there exists x ∈ R

such that a = xa2. Right regularity is defined in a symmetric way. Also, we can
generalize these concepts as following.

A near-ring R is said to be left κ-regular if, for each a ∈ R, there exists a positive
integer n and an element x ∈ R such that an = xan+1. Similarly, we can define right
κ-regular.

A near-ring R is called strongly left regular if R is left regular and regular, simi-
larly, we can define strongly right regular. A strongly left regular and strongly right
regular near-ring is called strongly regular near-ring.

Also, the concepts of left, strongly left, strongly right and strong regularities are
all equivalent conditions [2].

An idempotent element e2 = e in R is called left semi-central if ea = eae for each
a ∈ R. Similarly, right semi-centrality is defined in a symmetric way. A near-ring in
which every idempotent is left semi-central is called left semi-central.

We say that R is reduced if R has no nonzero nilpotent elements, that is, for each
a in R, an = 0, for some positive integer n implies a = 0. In ring theory, McCoy
proved that R is reduced if and only if for each a in R, a2 = 0 implies a = 0. A
near-ring R is said to be strongly reduced if, for a ∈ R, a2 ∈ Rc implies a ∈ Rc, that
is a20 = a2 implies a0 = a. Obviously R is strongly reduced if and only if, for a ∈ R

and any positive integer n, an ∈ Rc implies a ∈ Rc.
Obviously, we get the following examples by the concept of strong reducibility.

Example 1. (1) Every strongly regular near-ring is strongly reduced.
(2) Every right regular near-ring is strongly reduced.
(3) Every commutative integral near-ring is strongly reduced.

Lemma 2. Let R be a strongly reduced near-ring. Then we have the following
conditions.

(1) If for any a, b ∈ R with ab ∈ Rc, then ba ∈ Rc, and ∀x ∈ R, axb, bxa ∈ Rc.
Furthermore, abn ∈ Rc implies ab ∈ Rc, for each positive integer n.

(2) If for any a, b ∈ R with ab = 0, then ba = b0 = (ba)2. Moreover, abn = 0
implies ab = 0, for any positive integer n.

Proof. (1) Suppose that ab ∈ Rc. Then (ba)2 = baba = bab = bab0 ∈ Rc. Since R is
strongly reduced, we have ba ∈ Rc.
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Next, we see that xba ∈ Rc for each x ∈ R, whence (axb)2 ∈ Rc. By the strong
reducibility of R, we obtain axb ∈ Rc for each x ∈ R. Also, since ba ∈ Rc, we obtain
bxa ∈ Rc for each x ∈ R.

Furthermore, assume that abn ∈ Rc. Then using the first part of this (1), (ab)n ∈
Rc. Since R is strongly reduced, we see ab ∈ Rc.

(2) Assume that ab = 0. Then ab ∈ Rc by (1). Hence (ba)2 = baba = b0 ∈ Rc.
Hence ba ∈ Rc. Therefore we obtain that ba = (ba)2 = b0. Moreover, suppose that
abn = 0. Then ab ∈ Rc by the last part of (1), so that ab = abbn−1 = abn = 0 ¤
Lemma 3. Let R be a strongly reduced near-ring. If for any a, b ∈ R with ab = 0
and a2 = a0, then a = 0.

Proof. Suppose that for any a, b ∈ R with ab = 0 and a2 = a0. Then a2 = a0 ∈ Rc.
Strong reducibility implies that a ∈ Rc. Hence we obtain that a = a0 = a0b = ab =
0. ¤

From this Lemma 3, we have the following important statement.

Corollary 4. Every strongly reduced near-ring is reduced.

By Reddy and Murty [6], we say that a near-ring R has the property (*) if it
satisfies the conditions:

(i) for any a, b ∈ R, ab = 0 implies ba = b0.
(ii) for a ∈ R, a3 = a2 implies a2 = a.
Here, clearly we see that strong reducibility is equivalent to the condition (ii) and

strong reducibility implies condition (i) by Lemma 2 (2).
According to the Lemmas 2 and 3, we have the following valuable corollaries.

Corollary 5. Let R be a left (or right) regular near-ring. If for any a, b ∈ R with
ab = 0, then (ba)n = b0, for all positive integer n. In particular, ba = b0.

Corollary 6. Let R be a left (or right) regular near-ring. If for any a, b ∈ R with
ab = 0 and a2 = a0, then a = 0.

Now, we state another basic properties of strongly reduced near-rings.
Clearly, if R is a zero-symmetric near-ring, then R is strongly reduced if and only

if R is reduced. The following example shows that a reduced near-ring which is not
necessarily strongly reduced.
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Example 7. Let Z6 = {0, 1, 2, 3, 4, 5} with addition modulo 6 and define multipli-
cation as follows:

· 0 1 2 3 4 5

0 0 0 0 0 0 0
1 3 3 1 3 1 1
2 0 0 2 0 2 2
3 3 3 3 3 3 3
4 0 0 4 0 4 4
5 3 3 5 3 5 5

Obviously this is a reduced near-ring. The constant part of Z6 is {0, 3}. Since
12 = 3 is a constant element but 1 is not, this near-ring is not strongly reduced.

We obtain equivalent conditions for a near-ring R to be strongly reduced.

Proposition 8. The following statements are equivalent for a near-ring R:

(1) R is strongly reduced.
(2) For a ∈ R, a3 = a2 implies a2 = a.
(3) If an+1 = xan+1 for a, x ∈ R and some nonnegative integer n, then a =

xa = ax.

Proof. (1) =⇒ (2). Assume that a3 = a2. Then (a2 − a)a = 0, whence a(a2 − a) =
a0 ∈ Rc by Lemma 2 (2). Then (a2− a)a2 = (a3− a2)a = 0a = 0. Again by Lemma
2 (2), a2(a2− a) = a20 ∈ Rc. Hence (a2− a)2 = a2(a2− a)− a(a2− a) = a20− a0 =
(a2− a)0 ∈ Rc. This implies a2− a ∈ Rc. Hence a2− a = (a2− a)0 = (a2− a)a = 0.

(2) =⇒ (1). Assume a2 ∈ Rc. Then a3 = a2a = a2. By hypothesis, this implies
a = a2 ∈ Rc.

(1) =⇒ (3). Suppose an+1 = xan+1 for some n ≥ 0. Then (a−xa)an = 0. Hence
(a − xa)a = 0 by Lemma 2 (2), and so (a − xa)2 ∈ Rc by Lemma 2 (1). Since
R is strongly reduced, we have a − xa ∈ Rc. Then a − xa = (a − xa)a = 0, that
is a = xa. Now (a − ax)a = a2 − axa = a2 − a2 = 0 ∈ Rc. Hence (a − ax)2 =
a(a − ax) − ax(a − ax) ∈ Rc by Lemma 2 (1), and so a − ax ∈ Rc. Therefore
a− ax = (a− ax)a = 0.

(3) =⇒ (2). This is obvious. ¤
The following is a generalization of [6, Theorem 3].

Proposition 9. Let R be a strongly reduced near-ring and let a, x ∈ R. If an =
xan+1 for some positive integer n, then a = xa2 = axa and ax = xa.

Proof. Assume that an = xan+1 for some n ≥ 1. By Proposition 8 (3), a =
xa2 = axa. Then (ax − xa)a = 0. Hence, by Lemma 2 (2), (ax − xa)2 = ax(ax −
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xa) − xa(ax − xa) ∈ Rc. Since R is strongly reduced, ax − xa ∈ Rc. Hence
ax− xa = (ax− xa)a = 0. ¤

Here we give some characterizations of strongly regular near-rings.

Lemma 10 ([2]). Let R be an arbitrary near-ring. The following statements are
equivalent:

(1) R is left regular.
(2) R is strongly left regular.
(3) R is strongly regular.
(4) R is strongly right regular.
(5) R is left semi-central regular.

Using Examples 1, Propositions 8, 9 and Lemma 10, we obtain the following
conditions.

Proposition 11. Let R be a near-ring. Then the following statements are equiva-
lent:

(1) R is strongly regular.
(2) R is strongly reduced and left κ-regular.
(3) For each a ∈ R, there exists x ∈ R such that a = xa2xa.

Proof. (1) ⇐⇒ (2). This follows from Examples 1, a strongly regular near-ring is
strongly reduced, and Proposition 9.

(1) =⇒ (3) follows from Proposition 9.
(3) =⇒ (1). By hypothesis, R is strongly reduced. If a = xa2xa, then xa =

xxa2(xa). By Proposition 8, xa = xaxxa2. Thus a = xa2xax2a2. This implies that
R is strongly regular by Lemma 10. ¤
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