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THE CONSTRUCTION OF RELATIVE F-REGULAR
RELATIONS

HYuUNGSOO SONG

ABSTRACT. Given a homomorphism IT : X — Y, with Y minimal,
we will introduce the concept of a relative (to ITI) F-regular rela-
tion which generalize the notions of F-proximality, F-regularity and
relative F-proximality, and will study its properties.

1. Introduction

The concepts of proximality and regularity have proved to be very
fruitful for topological dynamics, giving rise to a rather extensive the-
ory. H.S. Song [6] introduced the concept of a F-regular flow which
is a slight generalization of that of a F-proximal flow. In this paper,
we will introduce the concept of a relative (to II) F-regular relation
which generalize the notions of F-proximality, F-regularity and relative
F-proximality, and will study its properties.

2. Preliminaries

In this paper, let T" be an arbitrary, but a fixed topological group
and we consider a flow (X,T) with compact Hausdorff space X. The
enveloping semigroup E(X) of (X, T) is the closure of {t : x +— xt |t €
T} in XX,

A pair of points (x,y),x,y € X is said to be prozimal if xp = yp for
some p € E(X). The proximal pairs is denoted by P(X,T).
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We denote the endomorphisms of (X, 7") by H(X) and the automor-
phisms of (X, T") by A(X). If ¢ € H(X), we use the notation ¢ € H;(X)
to denote ¢ |y € H(M) for any minimal subset M of (X, T). Similarly,
if € A(X), we use the notation ¢ € A;(X) to denote ¢ |y € A(M) for
any minimal subset M of (X, 7).

A pair of points (z,y), x,y € X is said to be regular provided that
(p(z),y) € P(X,T) for some ¢ € Hi(X). The regular pairs is denoted
by R(X,T).

For a flow (X,T'), we define the first prolongation set and the first
prolongation limit set of x in X respectively, by

D(z) ={y| xit; — y for some z; — x, t; € T},

J(z) ={y| z;it; = y for some z; — z, t; — oo},

where t; — oo means that the net {¢;} is ultimately outside of each
compact subset of T'.

A point z € X is said to have property M if whenever there are nets
{z;}, {y;} in X and a net {¢;} in T such that ; — z,y; — x and the
net {z;t;} is convergent, then the net {y;t;} is also convergent.

A flow (X, T) is said to be T-weakly equicontinuous if J(z,x) C Ax
and z has property M, for every x € X.

A pair of points (z,2'), x,2’ € X is said to be F-prozimal if D(z,x")N
Ax # (. Equivalently, (x,2'), z,2" € X is said to be F-prozimal if there
exist nets, {x;} and {z;/} in X, and a net {¢;} in T such that z; — z,
x, — 2/, and limz;t; = limzt;. The F-proximal pairs is denoted by
FP(X,T).

A pair of points (z,2'), xz,2’ € X is said to be F-regular provided
that (¢(z),2") € FP(X,T) for some ¢ € H;(X). The F-regular pairs is
denoted by FR(X,T).

Note that P(X,T) C FP(X,T) C FR(X,T)and P(X,T) C R(X,T)
c FR(X,T).

Given a homomorphism IT : X — Y, with Y minimal, we suppose
y € Y. Then (X" '® T) is a compact Hausdorff flow. We define
2, € XW'® by 2 (x) = z for all 2 € TI"(y) and let E(II,y) be the
orbit closure of z,. Then (E(IL,y),T) is a compact Hausdorff subflow of
(X™'®) T) and E(X) is an enveloping semigroup for E(IL, y). However,
E(I1,y) has no semigroup structure. Note that if Y is a singleton {y},
E(I1,y) is just the E(X), considered as a flow.
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Now we define various fundamental notions as follows.
Pp={(z,2") € X x X |U(z) =1I(2"), (z,2') € P(X,T)},
Pu(y) ={(z,2') € X x X [1I(z) = II(z") =y, (z,2") € P(X,T)},
Rp={(z,2") € X x X |I(z) =1(z), (¢(z),2') € P(X,T)
for some ¢ € H{(X)}
(
)

Rn(y) = {(z,2') € X x X | II(x)

for some ¢ € Hy(X)}.

I(z') =y, (¢(x),2") € P(X,T)

3. Relative F-regular relations

In this section we will work with a fixed homomorphism IT: X — Y,
where Y is minimal.

DEFINITION 3.1. A pair of points (x,2’), z,2’ € X is relatively F-
prozimal or belongs to the relative (to 11) F-proximal relation if there
exist nets {z;}, {z;'} in X and anet {¢;} in T such that II(z;) = II(x}) for
each i, v; — z, 2 — 2/ and lim z;t; = lim 2t;. The relative F-proximal
relation is denoted by F Pp.

Note that if (z,2") € F Py, then II(z) = II(2). Given y € Y, define
the set FPy(y) = {(z,2') € X x X | H(x) = () = y, (x,2') €
FP(X,T)}.

DEFINITION 3.2. The relative F-regular relation, denoted by F Ry, is
the set

{(z,2") € X x X |(x) =1(2'), (¢(x),2") € FP(X,T) for some ¢ €
Hy(X)}

Given y € Y, FRu(y) = {(z,2') € X x X | (x) = II(z') =
Y, (¢(z),2") € FP(X,T) for some ¢ € Hi(X)}.

REMARK 3.3. (1) Pqu C FPy C FRy.

(2) Pqr C Rp C FRy.

REMARK 3.4. Note that Pg = PH(l) = P(X,T), Rng = RH(l) =
R(X,T), FPqp=FPy(1) = FP(X,T),and FRy = FRy(1) = FR(X,T)
when applied to the unique homomorphism ® : X — 1, where 1 is the
one-point flow.

In [6], Song studied the F-regular relations and proved the following
theorem :
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THEOREM 3.5. (1) If (X, T) is T-weakly equicontinuous, then FP(X,T) =
P(X,T) and FR(X,T) = R(X,T).

(2)If (x,2") € FP(X,T) and ¢ € H(X), then (¢(z),p(z)) € FP(X,T).

(3) If (z,2') € FP(X,T) and o : (X,T) — (Y,T) is a homomor-
phism, then (o(z),0(z')) € FP(Y,T).

(4) Let H,(X) be algebraically transitive (that is, if v, 2’ € X, there is
an € Hi(X) withn(z) =2') and let (z,2') € FR(X,T) and ¢ € H(X).
Then (¢(z),¢(2')) € FR(X,T).

(5) Let o : (X,T) — (Y,T) be an epimorphism, and assume that
H,(Y) is algebraically transitive. If (X,T) is F-regular, then (Y,T) is
F-regular.

COROLLARY 3.6. If (X, T) is T-weakly equicontinuous, then F Py =
PH and FRH :RH.

Proof. This follows from Definition 3.1 and Theorem 3.5.1. Il

COROLLARY 3.7. (1) If (z,2") € P(X,T) , then (Il(x),II(z")) €
P(Y,T).

(2) If (z,2') € FP(X,T) , then (Il(z),11(z")) € FP(Y,T).

(3) If (z,2') € R(X,T) and H,(Y') is algebraically transitive, then
(I(x), I(«")) € R(Y,T).

(4) If (z,2") € FR(X,T) and H,(Y') is algebraically transitive, then
(II(x),11(2")) € FR(Y,T).

—~

8

THEOREM 3.8. Let Hy(X) be algebraically transitive. IfT1: X — Y
is an one-to-one extension of F-regular flow, then (X, T) is also F-regular.

Proof. For any z1,xs € X, there exist y1,y, € Y such that II(z;) =
y1, I(z2) = yo. Since (Y, T') is F-regular, there exists a ¢» € H;(Y") such
that (¢ (y1),y2) € FP(Y,T). Since an almost one-to-one extension of a
minimal F-proximal flow is F-proximal, we have (IT7* (¢(y1)), T (y2)) €
FP(X,T) (see Proposition 2.7 in [4]). But since H;(X) is algebraically
transitive, there is a ¢ € Hy(X) with ((x1) = I (¢)(y1)), it follows that
(x1,22) € FR(X,T). We thus have (X, T) is F-regular. O

LEMMA 3.9. [5] Let y € Y. Then Py(y) is an equivalence relation if
and only if E(I1,y) contains just one minimal set.

THEOREM 3.10. If H(X) is a group, then Ry(y) is a reflexive and
symmetric relation on 1171 (y).
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Proof. For any = € II"'(y), we have (z,z) € Pu(y) C Rnu(y). To
show that Rp(y) is symmetric, let (z,2') € Rp(y). Then Il(z) =
II(z") = y and there exists a ¢ € H;(X) such that (¢(x),2") € P(X,T).
Hence (2/,¢(z)) € P(X,T). But since ¢~! € H;(X), it follows that
(¢~ (a"),z) € P(X,T). Hence (z,x) € Rn(y). Therefore Ry(y) is
symimetric. O

It is well-known that if (X, T") is regular minimal, then every endo-
morphism of (X, 7) is an automorphism. Therefore we have

COROLLARY 3.11. If (X, T) is regular minimal, then Ry(y) is a re-
flexive and symmetric relation on 171 (y).

THEOREM 3.12. Let (X,T) be regular minimal. If E(Il,y) contains
just one minimal set, then Ry(y) is an equivalence relation on I17(y).

Proof. 1t suffices to show that Ry(y) is transitive. Suppose E(II,y)
contains just one minimal set. Let x,2’and z” be in X such that
(z,2') € Rp(y) and (2/,2") € Rp(y). Then II(z) = [I(2) = II(2") = y
and there exist ¢, € H,(X) such that (¢(x), ), (¢(2),2”) € P(X,T).
Hence (¢Yo(x),v(2)), (¥(a),2") € P(X,T). Lemma 3.9 shows that
(o(z),2") € P(X,T). Therefore Ry(y) is transitive. O

THEOREM 3.13. Let (X,T) be regular minimal and let y € Y. The
following statements are equivalent :

(a) Ru(y) is an equivalence relation on 117! (y).

(b) Let u be an idempotent with yu = y. Then (zu,z'u) € Ry(y) for
every (z,2') € Rp(y).

(c) Let u be an idempotent with yu = y and v be an equivalent
idempotent with u. Then (zu,zv) € Ry(y) for every x € I (y).

Proof. (a) implies (b). Let (z,2") € Ry(y) and let u be an idempotent
with yu = y. Note that (z,zu) € Rp(y) for all x € TI7!(y). Since
(x,zu) € Rp(y) and (2/,2'u) € Rn(y), and Rp(y) is an equivalence
relation on 171 (y), it follows that (zu,2’u) € Ru(y).

(b) implies (c¢). Note that yv = y(u)v = y(uv) = yu = y. Because
(zu,x) € Pu(y) for all z € TTI"Y(y) and P(y) C Ru(y), we have that
(xu,x) € Rp(y). Therefore (zuv, xv) = (xu,xv) € Ry(y) by the condi-
tion (b).

(c) implies (a). It suffices to show that Rp(y) is transitive. Let
(z,2") € Rn(y) and (2/,2") € Ru(y). Then II(z) = [I(z') = [I(2") = y
and there exist ¢, € Hy(X) such that (¢(x), ), (¢(2'),2") € P(X,T).
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Therefore there are minimal right ideals 7 and K in E(X) such that
o(x)p = o'p and Y(2')qg = 2"q for all p € I, ¢ € K. Now let u be an
idempotent in I with yu = y and v be an equivalent idempotent with
win K. Then ¢(x)u = 2’u and ¢ (z')v = 2”"v. Thus we have from the
condition (c) that (z'u,2’'v) € Rp(y) and (2"u,z"v) € Rp(y). Hence
(n(z'u), 2'v), (((2"u), 2"v) € P(X,T) for some n,( € H;(X). But since
(n(z'u), 2’v) and ({(z"u),z"v) are almost periodic points, we have that
n(z'u) = 2'v and ((2"u) = 2"v. Tt follows that {(2"u) = z"v = (2 )v =
bin(a'w)) = Y(1(p(z)w)) = Yn(z)u. Therefore ¢~yné(z)u = 2 and
hence (z,2") € Ru(y). O
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