• 제목/요약/키워드: 2-Absorbing primary ideals

검색결과 11건 처리시간 0.02초

On Graded 2-Absorbing and Graded Weakly 2-Absorbing Primary Ideals

  • Soheilnia, Fatemeh;Darani, Ahmad Yousefian
    • Kyungpook Mathematical Journal
    • /
    • 제57권4호
    • /
    • pp.559-580
    • /
    • 2017
  • Let G be an arbitrary group with identity e and let R be a G-graded ring. In this paper, we define the concept of graded 2-absorbing and graded weakly 2-absorbing primary ideals of commutative G-graded rings with non-zero identity. A number of results and basic properties of graded 2-absorbing primary and graded weakly 2-absorbing primary ideals are given.

On 2-absorbing Primary Ideals of Commutative Semigroups

  • Mandal, Manasi;Khanra, Biswaranjan
    • Kyungpook Mathematical Journal
    • /
    • 제62권3호
    • /
    • pp.425-436
    • /
    • 2022
  • In this paper we introduce the notion of 2-absorbing primary ideals of a commutative semigroup. We establish the relations between 2-absorbing primary ideals and prime, maximal, semiprimary and 2-absorbing ideals. We obtain various characterization theorems for commutative semigroups in which 2-absorbing primary ideals are prime, maximal, semiprimary and 2-absorbing ideals. We also study some other important properties of 2-absorbing primary ideals of a commutative semigroup.

On 2-Absorbing and Weakly 2-Absorbing Primary Ideals of a Commutative Semiring

  • Soheilnia, Fatemeh
    • Kyungpook Mathematical Journal
    • /
    • 제56권1호
    • /
    • pp.107-120
    • /
    • 2016
  • Let R be a commutative semiring. The purpose of this note is to investigate the concept of 2-absorbing (resp., weakly 2-absorbing) primary ideals generalizing of 2-absorbing (resp., weakly 2-absorbing) ideals of semirings. A proper ideal I of R said to be a 2-absorbing (resp., weakly 2-absorbing) primary ideal if whenever $a,b,c{\in}R$ such that $abc{\in}I$ (resp., $0{\neq}abc{\in}I$), then either $ab{\in}I$ or $bc{\in}\sqrt{I}$ or $ac{\in}\sqrt{I}$. Moreover, when I is a Q-ideal and P is a k-ideal of R/I with $I{\subseteq}P$, it is shown that if P is a 2-absorbing (resp., weakly 2-absorbing) primary ideal of R, then P/I is a 2-absorbing (resp., weakly 2-absorbing) primary ideal of R/I and it is also proved that if I and P/I are weakly 2-absorbing primary ideals, then P is a weakly 2-absorbing primary ideal of R.

ON GRADED 2-ABSORBING PRIMARY AND GRADED WEAKLY 2-ABSORBING PRIMARY IDEALS

  • Al-Zoubi, Khaldoun;Sharafat, Nisreen
    • 대한수학회지
    • /
    • 제54권2호
    • /
    • pp.675-684
    • /
    • 2017
  • Let G be a group with identity e and let R be a G-graded ring. In this paper, we introduce and study graded 2-absorbing primary and graded weakly 2-absorbing primary ideals of a graded ring which are different from 2-absorbing primary and weakly 2-absorbing primary ideals. We give some properties and characterizations of these ideals and their homogeneous components.

SOME RESULTS ON 1-ABSORBING PRIMARY AND WEAKLY 1-ABSORBING PRIMARY IDEALS OF COMMUTATIVE RINGS

  • Nikandish, Reza;Nikmehr, Mohammad Javad;Yassine, Ali
    • 대한수학회보
    • /
    • 제58권5호
    • /
    • pp.1069-1078
    • /
    • 2021
  • Let R be a commutative ring with identity. A proper ideal I of R is called 1-absorbing primary ([4]) if for all nonunit a, b, c ∈ R such that abc ∈ I, then either ab ∈ I or c ∈ ${\sqrt{1}}$. The concept of 1-absorbing primary ideals in a polynomial ring, in a PID and in idealization of a module is studied. Moreover, we introduce weakly 1-absorbing primary ideals which are generalization of weakly prime ideals and 1-absorbing primary ideals. A proper ideal I of R is called weakly 1-absorbing primary if for all nonunit a, b, c ∈ R such that 0 ≠ abc ∈ I, then either ab ∈ I or c ∈ ${\sqrt{1}}$. Some properties of weakly 1-absorbing primary ideals are investigated. For instance, weakly 1-absorbing primary ideals in decomposable rings are characterized. Among other things, it is proved that if I is a weakly 1-absorbing primary ideal of a ring R and 0 ≠ I1I2I3 ⊆ I for some ideals I1, I2, I3 of R such that I is free triple-zero with respect to I1I2I3, then I1I2 ⊆ I or I3 ⊆ I.

ON WEAKLY 2-ABSORBING PRIMARY IDEALS OF COMMUTATIVE RINGS

  • Badawi, Ayman;Tekir, Unsal;Yetkin, Ece
    • 대한수학회지
    • /
    • 제52권1호
    • /
    • pp.97-111
    • /
    • 2015
  • Let R be a commutative ring with $1{\neq}0$. In this paper, we introduce the concept of weakly 2-absorbing primary ideal which is a generalization of weakly 2-absorbing ideal. A proper ideal I of R is called a weakly 2-absorbing primary ideal of R if whenever a, b, $c{\in}R$ and $0{\neq}abc{\in}I$, then $ab{\in}I$ or $ac{\in}\sqrt{I}$ or $bc{\in}\sqrt{I}$. A number of results concerning weakly 2-absorbing primary ideals and examples of weakly 2-absorbing primary ideals are given.

ON 𝜙-n-ABSORBING PRIMARY IDEALS OF COMMUTATIVE RINGS

  • Mostafanasab, Hojjat;Darani, Ahmad Yousefian
    • 대한수학회지
    • /
    • 제53권3호
    • /
    • pp.549-582
    • /
    • 2016
  • All rings are commutative with $1{\neq}0$ and n is a positive integer. Let ${\phi}:{\Im}(R){\rightarrow}{\Im}(R){\cup}\{{\emptyset}\}$ be a function where ${\Im}(R)$ denotes the set of all ideals of R. We say that a proper ideal I of R is ${\phi}$-n-absorbing primary if whenever $a_1,a_2,{\cdots},a_{n+1}{\in}R$ and $a_1,a_2,{\cdots},a_{n+1}{\in}I{\backslash}{\phi}(I)$, either $a_1,a_2,{\cdots},a_n{\in}I$ or the product of $a_{n+1}$ with (n-1) of $a_1,{\cdots},a_n$ is in $\sqrt{I}$. The aim of this paper is to investigate the concept of ${\phi}$-n-absorbing primary ideals.

2-absorbing δ-semiprimary Ideals of Commutative Rings

  • Celikel, Ece Yetkin
    • Kyungpook Mathematical Journal
    • /
    • 제61권4호
    • /
    • pp.711-725
    • /
    • 2021
  • Let R be a commutative ring with nonzero identity, 𝓘(𝓡) the set of all ideals of R and δ : 𝓘(𝓡) → 𝓘(𝓡) an expansion of ideals of R. In this paper, we introduce the concept of 2-absorbing δ-semiprimary ideals in commutative rings which is an extension of 2-absorbing ideals. A proper ideal I of R is called 2-absorbing δ-semiprimary ideal if whenever a, b, c ∈ R and abc ∈ I, then either ab ∈ δ(I) or bc ∈ δ(I) or ac ∈ δ(I). Many properties and characterizations of 2-absorbing δ-semiprimary ideals are obtained. Furthermore, 2-absorbing δ1-semiprimary avoidance theorem is proved.

ON 2-ABSORBING PRIMARY IDEALS IN COMMUTATIVE RINGS

  • Badawi, Ayman;Tekir, Unsal;Yetkin, Ece
    • 대한수학회보
    • /
    • 제51권4호
    • /
    • pp.1163-1173
    • /
    • 2014
  • Let R be a commutative ring with $1{\neq}0$. In this paper, we introduce the concept of 2-absorbing primary ideal which is a generalization of primary ideal. A proper ideal I of R is called a 2-absorbing primary ideal of R if whenever $a,b,c{\in}R$ and $abc{\in}I$, then $ab{\in}I$ or $ac{\in}\sqrt{I}$ or $bc{\in}\sqrt{I}$. A number of results concerning 2-absorbing primary ideals and examples of 2-absorbing primary ideals are given.