ON ϕ - n-ABSORBING PRIMARY IDEALS OF COMMUTATIVE RINGS

Hojuat Mostafanasab and Ahmad Yousefian Darani

Abstract

All rings are commutative with $1 \neq 0$ and n is a positive integer. Let $\phi: \mathfrak{J}(R) \rightarrow \mathfrak{J}(R) \cup\{\emptyset\}$ be a function where $\mathfrak{J}(R)$ denotes the set of all ideals of R. We say that a proper ideal I of R is ϕ-n-absorbing primary if whenever $a_{1}, a_{2}, \ldots, a_{n+1} \in R$ and $a_{1} a_{2} \cdots a_{n+1} \in I \backslash \phi(I)$, either $a_{1} a_{2} \cdots a_{n} \in I$ or the product of a_{n+1} with $(n-1)$ of a_{1}, \ldots, a_{n} is in \sqrt{I}. The aim of this paper is to investigate the concept of $\phi-n$-absorbing primary ideals.

1. Introduction

Throughout this paper R will be a commutative ring with a nonzero identity. In [2], Anderson and Smith called a proper ideal I of a commutative ring R to be weakly prime if whenever $a, b \in R$ and $0 \neq a b \in I$, either $a \in I$ or $b \in I$. In [9], Bhatwadekar and Sharma defined a proper ideal I of an integral domain R to be almost prime (resp. m-almost prime) if for $a, b \in R$ with $a b \in I \backslash I^{2}$, (resp. $a b \in I \backslash I^{m}, m \geq 3$) either $a \in I$ or $b \in I$. This definition can obviously be made for any commutative ring R. Later, Anderson and Batanieh [1] gave a generalization of prime ideals which covers all the above mentioned definitions. Let $\phi: \mathfrak{J}(R) \rightarrow \mathfrak{J}(R) \cup\{\emptyset\}$ be a function. A proper ideal I of R is said to be ϕ-prime if for $a, b \in R$ with $a b \in I \backslash \phi(I), a \in I$ or $b \in I$. Since $I \backslash \phi(I)=I \backslash(I \cap \phi(I))$, without loss of generality we may assume that $\phi(I) \subseteq I$. We henceforth make this assumption. Weakly primary ideals were first introduced and studied by Ebrahimi Atani and Farzalipour in [10]. A proper ideal I of R is called weakly primary if for $a, b \in R$ with $0 \neq a b \in I$, either $a \in I$ or $b \in \sqrt{I}$. In [25], Yousefian Darani called a proper ideal I of R to be ϕ-primary if for $a, b \in R$ with $a b \in I \backslash \phi(I)$, then either $a \in I$ or $b \in \sqrt{I}$. He defined the map $\phi_{\alpha}: \mathfrak{J}(R) \rightarrow \mathfrak{J}(R) \cup\{\emptyset\}$ as follows:
(1) $\phi_{\emptyset}: \phi(I)=\emptyset$ defines primary ideals.
(2) $\phi_{0}: \phi(I)=0$ defines weakly primary ideals.

[^0](3) $\phi_{2}: \phi(I)=I^{2}$ defines almost primary ideals.
(4) $\phi_{m}(m \geq 2): \phi(I)=I^{m}$ defines m-almost primary ideals.
(5) $\phi_{\omega}: \phi(I)=\cap_{m=1}^{\infty} I^{m}$ defines ω-primary ideals.
(6) $\phi_{1}: \phi(I)=I$ defines any ideals.

Given two functions $\psi_{1}, \psi_{2}: \mathfrak{J}(R) \rightarrow \mathfrak{J}(R) \cup\{\emptyset\}$, we define $\psi_{1} \leq \psi_{2}$ if $\psi_{1}(J) \subseteq$ $\psi_{2}(J)$ for each $J \in \mathfrak{J}(R)$. Note in this case that

$$
\phi_{\emptyset} \leq \phi_{0} \leq \phi_{\omega} \leq \cdots \leq \phi_{m+1} \leq \phi_{m} \leq \cdots \leq \phi_{2} \leq \phi_{1} .
$$

Badawi in [4] generalized the concept of prime ideals in a different way. He defined a nonzero proper ideal I of R to be a 2-absorbing ideal of R if whenever $a, b, c \in R$ and $a b c \in I$, then $a b \in I$ or $a c \in I$ or $b c \in I$. Anderson and Badawi [3] generalized the concept of 2 -absorbing ideals to n-absorbing ideals. According to their definition, a proper ideal I of R is called an n absorbing (resp. strongly n-absorbing) ideal if whenever $a_{1} \cdots a_{n+1} \in I$ for $a_{1}, \ldots, a_{n+1} \in R$ (resp. $I_{1} \cdots I_{n+1} \subseteq I$ for ideals I_{1}, \ldots, I_{n+1} of R), then there are n of the a_{i} 's (resp. n of the I_{i} 's) whose product is in I. Thus a strongly 1 -absorbing ideal is just a prime ideal. Clearly a strongly n-absorbing ideal of R is also an n-absorbing ideal of R. Anderson and Badawi conjectured that these two concepts are equivalent, e.g., they proved that an ideal I of a Prüfer domain R is strongly n-absorbing if and only if I is an n-absorbing ideal of R, [3, Corollary 6.9]. They also gave several results relating strongly n-absorbing ideals. The concept of 2 -absorbing ideals has another generalization, called weakly 2 -absorbing ideals, which has studied in [8]. A proper ideal I of R is a weakly 2-absorbing ideal of R if whenever $a, b, c \in R$ and $0 \neq a b c \in I$, then $a b \in I$ or $a c \in I$ or $b c \in I$. Generally, Mostafanasab et al. [15] called a proper ideal I of R to be a weakly n-absorbing (resp. strongly weakly n-absorbing) ideal if whenever $0 \neq a_{1} \cdots a_{n+1} \in I$ for $a_{1}, \ldots, a_{n+1} \in R$ (resp. $0 \neq I_{1} \cdots I_{n+1} \subseteq I$ for ideals I_{1}, \ldots, I_{n+1} of R), then there are n of the a_{i} 's (resp. n of the I_{i} 's) whose product is in I. Clearly a strongly weakly n-absorbing ideal of R is also a weakly n-absorbing ideal of R. Let $\phi: \mathfrak{J}(R) \rightarrow \mathfrak{J}(R) \cup\{\emptyset\}$ be a function. We say that a proper ideal I of R is a $\phi-n$-absorbing (resp. strongly $\phi-n$ absorbing) ideal of R if $a_{1} a_{2} \cdots a_{n+1} \in I \backslash \phi(I)$ for $a_{1}, a_{2}, \ldots, a_{n+1} \in R$ (resp. $I_{1} \cdots I_{n+1} \subseteq I$ and $I_{1} \cdots I_{n+1} \nsubseteq \phi(I)$ for ideals I_{1}, \ldots, I_{n+1} of $\left.R\right)$ implies that there are n of the a_{i} 's (resp. n of the I_{i} 's) whose product is in I. Notice that ϕ - n-absorbing ideals of a commutative ring R have already been investigated by Ebrahimpour and Nekooei [11] as ($n, n+1$)- ϕ-prime ideals.

Recall from [6] that a proper ideal I of R is said to be a 2-absorbing primary ideal of R if whenever $a, b, c \in R$ with $a b c \in I$, then $a b \in I$ or $a c \in \sqrt{I}$ or $b c \in \sqrt{I}$. For more studies concerning 2-absorbing primary (submodules) ideals we refer to [16], [17]. Also, recall from [7] that a proper ideal I of R is said to be a weakly 2-absorbing primary ideal of R if whenever $a, b, c \in R$ with $0 \neq a b c \in I$ implies $a b \in I$ or $a c \in \sqrt{I}$ or $b c \in \sqrt{I}$. We call a proper ideal I of R to be a ϕ - n-absorbing primary (resp. strongly ϕ - n-absorbing primary) ideal of R if $a_{1} a_{2} \cdots a_{n+1} \in I \backslash \phi(I)$ for some elements $a_{1}, a_{2}, \ldots, a_{n+1} \in R$ (resp.
$I_{1} \cdots I_{n+1} \subseteq I$ and $I_{1} \cdots I_{n+1} \nsubseteq \phi(I)$ for ideals I_{1}, \ldots, I_{n+1} of $\left.R\right)$ implies that either $a_{1} a_{2} \cdots a_{n} \in I$ or the product of a_{n+1} with $(n-1)$ of $a_{1}, a_{2}, \ldots, a_{n}$ is in \sqrt{I} (resp. either $I_{1} I_{2} \cdots I_{n} \subseteq I$ or the product of I_{n+1} with $(n-1)$ of $I_{1}, I_{2}, \ldots, I_{n}$ is in $\left.\sqrt{I}\right)$. We can define the map $\phi_{\alpha}: \mathfrak{J}(R) \rightarrow \mathfrak{J}(R) \cup\{\emptyset\}$ as follows: Let I be a $\phi_{\alpha}-n$-absorbing primary ideal of R. Then
(1) $\phi_{\emptyset}(I)=\emptyset \Rightarrow I$ is an n-absorbing primary ideal.
(2) $\phi_{0}(I)=0 \Rightarrow I$ is a weakly n-absorbing primary ideal.
(3) $\phi_{2}(I)=I^{2} \Rightarrow I$ is an almost n-absorbing primary ideal.
(4) $\phi_{m}(I)=I^{m}(m \geq 2) \Rightarrow I$ is an m-almost n-absorbing primary ideal.
(5) $\phi_{\omega}(I)=\cap_{m=1}^{\infty} I^{m} \Rightarrow I$ is an ω - n-absorbing primary ideal.
(6) $\phi_{1}(I)=I \Rightarrow I$ is any ideal.

Some of our results use the $R(+) M$ construction. Let R be a ring and M be an R-module. Then $R(+) M=R \times M$ is a ring with identity $(1,0)$ under addition defined by $(r, m)+(s, n)=(r+s, m+n)$ and multiplication defined by $(r, m)(s, n)=(r s, r n+s m)$.

In [22], Quartararo et al. said that a commutative ring R is a u-ring provided R has the property that an ideal contained in a finite union of ideals must be contained in one of those ideals. They show that every Bézout ring is a u-ring. Moreover, they proved that every Prüfer domain is a u-domain. Also, any ring which contains an infinite field as a subring is a u-ring, [24, Exercise 3.63].

Let R be a ring and $\phi: \mathfrak{J}(R) \rightarrow \mathfrak{J}(R) \cup\{\emptyset\}$ be a function. In Section 2, we give some basic properties of ϕ - n-absorbing primary ideals. For instance, we prove that if ϕ reverses the inclusion and for every $1 \leq i \leq k, I_{i}$ is a $\phi-n_{i}$-absorbing primary ideal of R such that $\sqrt{I_{i}}$ is a $\phi-n_{i}$-absorbing ideal of R, respectively, then $I_{1} \cap I_{2} \cap \cdots \cap I_{k}$ and $I_{1} I_{2} \cdots I_{k}$ are two ϕ - n-absorbing primary ideals of R where $n=n_{1}+n_{2}+\cdots+n_{k}$. It is shown that a Noetherian domain R is a Dedekind domain if and only if a nonzero n-absorbing primary ideal of R is in the form of $I=M_{1}^{t_{1}} M_{2}^{t_{2}} \cdots M_{i}^{t_{i}}$ for some $1 \leq i \leq n$ and some distinct maximal ideals $M_{1}, M_{2}, \ldots, M_{i}$ of R and some positive integers $t_{1}, t_{2}, \ldots, t_{i}$. Moreover, we prove that if I is an ideal of a ring R such that $\sqrt{I}=M_{1} \cap M_{2} \cap \cdots \cap M_{n}$ where M_{i} 's are maximal ideals of R, then I is an n-absorbing primary ideal of R. We show that if I is a $\phi-n$-absorbing primary ideal of R that is not an n-absorbing primary ideal, then $I^{n+1} \subseteq \phi(I)$.

In Section 3, we investigate ϕ - n-absorbing primary ideals of direct products of commutative rings. For example, it is shown that if R is an indecomposable ring and J is a finitely generated $\phi-n$-absorbing primary ideal of R, where $\phi \leq \phi_{n+2}$, then J is weakly n-absorbing primary. Let $n \geq 2$ be a natural number and $R=R_{1} \times \cdots \times R_{n+1}$ be a decomposable ring with identity. Then we prove that R is a von Neumann regular ring if and only if every proper ideal of R is an n-almost n-absorbing primary ideal of R if and only if every proper ideal of R is an ω - n-absorbing primary ideal of R.

In Section 4, we study the stability of ϕ - n-absorbing primary ideals with respect to idealization. As a result of this section, we establish that if I is a
proper ideal of R and M is an R-module such that $I M=M$, then $I(+) M$ is an n-almost n-absorbing primary ideal of $R(+) M$ if and only if I is an n-almost n-absorbing primary ideal of R.

In Section 5, we prove that over a u-ring R the two concepts of strongly ϕ - n-absorbing primary ideals and of ϕ - n-absorbing primary ideals are coincide. Moreover, if R is a Prüfer domain and I is an ideal of R, then I is an n absorbing primary ideal of R if and only if $I[X]$ is an n-absorbing primary ideal of $R[X]$.

2. Properties of $\boldsymbol{\phi}$ - \boldsymbol{n}-absorbing primary ideals

Let n be a positive integer. Consider elements a_{1}, \ldots, a_{n} and ideals I_{1}, \ldots, I_{n} of a ring R. Throughout this paper we use the following notations:

- $a_{1} \cdots \widehat{a_{i}} \cdots a_{n}$: i-th term is excluded from $a_{1} \cdots a_{n}$.
- $I_{1} \cdots \widehat{I}_{i} \cdots I_{n}$: i-th term is excluded from $I_{1} \cdots I_{n}$.

It is obvious that any n-absorbing primary ideal of a ring R is a $\phi-n$ absorbing primary ideal of R. Also it is evident that the zero ideal is a weakly n-absorbing primary ideal of R. Assume that $p_{1}, p_{2}, \ldots, p_{n+1}$ are distinct prime numbers. We know that the zero ideal $I=\{0\}$ is a weakly n-absorbing primary ideal of the ring $\mathbb{Z}_{p_{1} p_{2} \cdots p_{n+1}}$. Notice that $p_{1} p_{2} \cdots p_{n+1}=0 \in I$, but neither $p_{1} p_{2} \cdots p_{n} \in I$ nor $p_{1} \cdots \widehat{p_{i}} \cdots p_{n+1} \in \sqrt{I}=\operatorname{Nil}\left(\mathbb{Z}_{p_{1} p_{2} \cdots p_{n+1}}\right)$ for every $1 \leq i \leq n$. Hence I is not an n-absorbing primary ideal of $\mathbb{Z}_{p_{1} p_{2} \cdots p_{n+1}}$.

Remark 2.1. Let I be a proper ideal of a ring R and $\phi: \mathfrak{J}(R) \rightarrow \mathfrak{J}(R) \cup\{\emptyset\}$ be a function.
(1) I is ϕ-primary if and only if I is ϕ-1-absorbing primary.
(2) If I is ϕ - n-absorbing primary, then it is ϕ - i-absorbing primary for all $i>n$.
(3) If I is ϕ-primary, then it is ϕ - n-absorbing primary for all $n>1$.
(4) If I is ϕ - n-absorbing primary for some $n \geq 1$, then there exists the least $n_{0} \geq 1$ such that I is ϕ - n_{0}-absorbing primary. In this case, I is ϕ -n-absorbing primary for all $n \geq n_{0}$ and it is not ϕ - i-absorbing primary for $n_{0}>i>0$.

Remark 2.2. If I is a radical ideal of a ring R, then clearly I is a $\phi-n$-absorbing primary (resp. strongly $\phi-n$-absorbing primary) ideal if and only if I is a $\phi-n$ absorbing (resp. strongly ϕ - n-absorbing) ideal.

Theorem 2.3. Let R be a ring and let $\phi: \mathfrak{J}(R) \rightarrow \mathfrak{J}(R) \cup\{\emptyset\}$ be a function. Then the following conditions are equivalent:
(1) I is ϕ - n-absorbing primary;
(2) For every elements $x_{1}, \ldots, x_{n} \in R$ with $x_{1} \cdots x_{n} \notin \sqrt{I}$,

$$
\begin{aligned}
\left(I:_{R} x_{1} \cdots x_{n}\right) \subseteq & {\left[\cup_{i=1}^{n-1}\left(\sqrt{I}:_{R} x_{1} \cdots \widehat{x_{i}} \cdots x_{n}\right)\right] } \\
& \cup\left(I:_{R} x_{1} \cdots x_{n-1}\right) \cup\left(\phi(I):_{R} x_{1} \cdots x_{n}\right) .
\end{aligned}
$$

Proof. (1) \Rightarrow (2) Suppose that $x_{1}, \ldots, x_{n} \in R$ such that $x_{1} \cdots x_{n} \notin \sqrt{I}$. Let $a \in\left(I:_{R} x_{1} \cdots x_{n}\right)$. So $a x_{1} \cdots x_{n} \in I$. If $a x_{1} \cdots x_{n} \in \phi(I)$, then $a \in\left(\phi(I):_{R}\right.$ $\left.x_{1} \cdots x_{n}\right)$. Assume that $a x_{1} \cdots x_{n} \notin \phi(I)$. Since $x_{1} \cdots x_{n} \notin \sqrt{I}$, then either $a x_{1} \cdots x_{n-1} \in I$, i.e., $a \in\left(I:_{R} x_{1} \cdots x_{n-1}\right)$ or for some $1 \leq i \leq n-1$ we have $a x_{1} \cdots \widehat{x_{i}} \cdots x_{n} \in \sqrt{I}$, i.e., $a \in\left(\sqrt{I}:_{R} x_{1} \cdots \widehat{x_{i}} \cdots x_{n}\right)$. Consequently

$$
\begin{aligned}
\left(I:_{R} x_{1} \cdots x_{n}\right) \subseteq & {\left[\cup_{i=1}^{n-1}\left(\sqrt{I}:_{R} x_{1} \cdots \widehat{x_{i}} \cdots x_{n}\right)\right] } \\
& \cup\left(I:_{R} x_{1} \cdots x_{n-1}\right) \cup\left(\phi(I):_{R} x_{1} \cdots x_{n}\right) .
\end{aligned}
$$

$(2) \Rightarrow(1)$ Let $a_{1} a_{2} \cdots a_{n+1} \in I \backslash \phi(I)$ for some $a_{1}, a_{2}, \ldots, a_{n+1} \in R$ such that $a_{1} a_{2} \cdots a_{n} \notin I$. Then $a_{1} \in\left(I:_{R} a_{2} \cdots a_{n+1}\right)$. If $a_{2} \cdots a_{n+1} \in \sqrt{I}$, then we are done. Hence we may assume that $a_{2} \cdots a_{n+1} \notin \sqrt{I}$ and so by part (2),

$$
\begin{aligned}
\left(I:_{R} a_{2} \cdots a_{n+1}\right) \subseteq & {\left[\cup_{i=2}^{n}\left(\sqrt{I}:_{R} a_{2} \cdots \widehat{a_{i}} \cdots a_{n+1}\right)\right] } \\
& \cup\left(I:_{R} a_{2} \cdots a_{n}\right) \cup\left(\phi(I):_{R} a_{2} \cdots a_{n+1}\right) .
\end{aligned}
$$

Since $a_{1} a_{2} \cdots a_{n+1} \notin \phi(I)$ and $a_{1} a_{2} \cdots a_{n} \notin I$, the only possibility is that $a_{1} \in \cup_{i=2}^{n}\left(\sqrt{I}:_{R} a_{2} \cdots \widehat{a_{i}} \cdots a_{n+1}\right)$. Then $a_{1} a_{2} \cdots \widehat{a_{i}} \cdots a_{n+1} \in \sqrt{I}$ for some $2 \leq i \leq n$. Consequently I is $\phi-n$-absorbing primary.

Let R be an integral domain with quotient field K. Badawi and Houston [5] defined a proper ideal I of R to be strongly primary if, whenever $a b \in I$ with $a, b \in K$, we have $a \in I$ or $b \in \sqrt{I}$. In [25], a proper ideal I of R is called strongly ϕ-primary if whenever $a b \in I \backslash \phi(I)$ with $a, b \in K$, we have either $a \in I$ or $b \in \sqrt{I}$. We say that a proper ideal I of R is quotient ϕ - n-absorbing primary if whenever $x_{1} x_{2} \cdots x_{n+1} \in I \backslash \phi(I)$ with $x_{1}, x_{2}, \ldots, x_{n+1} \in K$, we have either $x_{1} x_{2} \cdots x_{n} \in I$ or $x_{1} \cdots \widehat{x_{i}} \cdots x_{n+1} \in \sqrt{I}$ for some $1 \leq i \leq n$.
Proposition 2.4. Let V be a valuation domain with the quotient field K, and let $\phi: \mathfrak{J}(V) \rightarrow \mathfrak{J}(V) \cup\{\emptyset\}$ be a function. Then every ϕ - n-absorbing primary ideal of V is quotient ϕ-n-absorbing primary.

Proof. Assume that I is a ϕ - n-absorbing primary ideal of V. Let $x_{1} x_{2} \cdots x_{n+1}$ $\in I$ for some $x_{1}, x_{2}, \ldots, x_{n+1} \in K$ such that $x_{1} x_{2} \cdots x_{n} \notin I$. If $x_{n+1} \notin V$, then $x_{n+1}^{-1} \in V$, since V is valuation. So $x_{1} \cdots x_{n} x_{n+1} x_{n+1}^{-1}=x_{1} \cdots x_{n} \in I$, a contradiction. Hence $x_{n+1} \in V$. If $x_{i} \in V$ for every $1 \leq i \leq n$, then there is nothing to prove. If $x_{i} \notin V$ for some $1 \leq i \leq n$, then $x_{1} \cdots \widehat{x_{i}} \cdots x_{n+1} \in I \subseteq \sqrt{I}$. Consequently, I is quotient ϕ - n-absorbing primary.

Proposition 2.5. Let R be a von Neumann regular ring and let $\phi: \mathfrak{J}(R) \rightarrow$ $\mathfrak{J}(R) \cup\{\emptyset\}$ be a function. Then I is a ϕ - n-absorbing primary ideal of R if and only if $e_{1} e_{2} \cdots e_{n+1} \in I \backslash \phi(I)$ for some idempotent elements $e_{1}, e_{2}, \ldots, e_{n+1} \in$ R implies that either $e_{1} e_{2} \cdots e_{n} \in I$ or $e_{1} \cdots \widehat{e_{i}} \cdots e_{n+1} \in \sqrt{I}$ for some $1 \leq i \leq$ n.

Proof. Notice the fact that any finitely generated ideal of a von Neumann regular ring R is generated by an idempotent element.

Theorem 2.6. Let R be a ring and let $\phi: \mathfrak{J}(R) \rightarrow \mathfrak{J}(R) \cup\{\emptyset\}$ be a function. If I is a ϕ-n-absorbing primary ideal of R such that $\sqrt{\phi(I)}=\phi(\sqrt{I})$, then \sqrt{I} is a ϕ - n-absorbing ideal of R.
Proof. Let $x_{1} x_{2} \cdots x_{n+1} \in \sqrt{I} \backslash \phi(\sqrt{I})$ for some $x_{1}, x_{2}, \ldots, x_{n+1} \in R$ such that $x_{1} \cdots \widehat{x_{i}} \cdots x_{n+1} \notin \sqrt{I}$ for every $1 \leq i \leq n$. Then there is a natural number m such that $x_{1}^{m} x_{2}^{m} \cdots x_{n+1}^{m} \in I$. If $x_{1}^{m} x_{2}^{m} \cdots x_{n+1}^{m} \in \phi(I)$, then $x_{1} x_{2} \cdots x_{n+1} \in$ $\sqrt{\phi(I)}=\phi(\sqrt{I})$, which is a contradiction. Since I is ϕ - n-absorbing primary, our hypothesis implies that $x_{1}^{m} x_{2}^{m} \cdots x_{n}^{m} \in I$. Hence $x_{1} x_{2} \cdots x_{n} \in \sqrt{I}$. Therefore \sqrt{I} is a ϕ - n-absorbing ideal of R.

Corollary 2.7. Let I be an n-absorbing primary ideal of R. Then $\sqrt{I}=$ $P_{1} \cap P_{2} \cap \cdots \cap P_{i}$ where $1 \leq i \leq n$ and P_{i} 's are the only distinct prime ideals of R that are minimal over I.

Proof. In Theorem 2.6, suppose that $\phi=\phi_{\emptyset}$. Now apply [3, Theorem 2.5].
Theorem 2.8. Let R be a ring, and let $\phi: \mathfrak{J}(R) \rightarrow \mathfrak{J}(R) \cup\{\emptyset\}$ be a function that reverses the inclusion. Suppose that for every $1 \leq i \leq k, I_{i}$ is a $\phi-n_{i}$ absorbing primary ideal of R such that $\sqrt{I_{i}}=P_{i}$ is a $\phi-n_{i}$-absorbing ideal of R, respectively. Set $n:=n_{1}+n_{2}+\cdots+n_{k}$. The following conditions hold:
(1) $I_{1} \cap I_{2} \cap \cdots \cap I_{k}$ is a ϕ-n-absorbing primary ideal of R.
(2) $I_{1} I_{2} \cdots I_{k}$ is a ϕ-n-absorbing primary ideal of R.

Proof. (1) Set $L=I_{1} \cap I_{2} \cap \cdots \cap I_{k}$. Then $\sqrt{L}=P_{1} \cap P_{2} \cap \cdots \cap P_{k}$. Suppose that $a_{1} a_{2} \cdots a_{n+1} \in L \backslash \phi(L)$ for some $a_{1}, a_{2}, \ldots, a_{n+1} \in R$ and $a_{1} \cdots \widehat{a_{i}} \cdots a_{n+1} \notin$ \sqrt{L} for every $1 \leq i \leq n$. By, $\sqrt{L}=P_{1} \cap P_{2} \cap \cdots \cap P_{k}$ is ϕ - n-absorbing, then $a_{1} a_{2} \cdots a_{n} \in P_{1} \cap P_{2} \cap \cdots \cap P_{k}$. We claim that $a_{1} a_{2} \cdots a_{n} \in L$. For every $1 \leq i \leq k, P_{i}$ is ϕ - n_{i}-absorbing and $a_{1} a_{2} \cdots a_{n} \in P_{i} \backslash \phi\left(P_{i}\right)$, then there exist elements $1 \leq \beta_{1}^{i}, \beta_{2}^{i}, \ldots, \beta_{n_{i}}^{i} \leq n$ such that $a_{\beta_{1}^{i}} a_{\beta_{2}^{i}} \cdots a_{\beta_{n_{i}}^{i}} \in P_{i}$. If $\beta_{r}^{l}=\beta_{s}^{m}$ for two pairs l, r and m, s, then

$$
\begin{aligned}
& a_{\beta_{1}^{1}} a_{\beta_{2}^{1}} \cdots a_{\beta_{n_{1}}^{1}} \cdots a_{\beta_{1}^{l}} a_{\beta_{2}^{l}} \cdots a_{\beta_{r}^{l}} \cdots a_{\beta_{n_{l}}^{l}} \cdots \\
& \quad a_{\beta_{1}^{m}} a_{\beta_{2}^{m}} \cdots \widehat{a_{\beta_{s}^{m}}^{m}} \cdots a_{\beta_{n_{m}}^{m}} \cdots a_{\beta_{1}^{k}} a_{\beta_{2}^{k}} \cdots a_{\beta_{n_{k}}^{k}} \in \sqrt{L} .
\end{aligned}
$$

Therefore $a_{1} \cdots \widehat{a_{\beta_{s}^{m}}} \cdots a_{n} a_{n+1} \in \sqrt{L}$, a contradiction. So β_{j}^{i},s are distinct. Hence
$\left\{a_{\beta_{1}^{1}}, a_{\beta_{2}^{1}}, \ldots, a_{\beta_{n_{1}}^{1}}, a_{\beta_{1}^{2}}, a_{\beta_{2}^{2}}, \ldots, a_{\beta_{n_{2}}^{2}}, \ldots, a_{\beta_{1}^{k}}, a_{\beta_{2}^{k}}, \ldots, a_{\beta_{n_{k}}^{k}}\right\}=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$. If $a_{\beta_{1}^{i}} a_{\beta_{2}^{i}} \cdots a_{\beta_{n_{i}}^{i}} \in I_{i}$ for every $1 \leq i \leq k$, then

$$
a_{1} a_{2} \cdots a_{n}=a_{\beta_{1}^{1}} a_{\beta_{2}^{1}} \cdots a_{\beta_{n_{1}}^{1}} a_{\beta_{1}^{2}} a_{\beta_{2}^{2}} \cdots a_{\beta_{n_{2}}^{2}} \cdots a_{\beta_{1}^{k}} a_{\beta_{2}^{k}} \cdots a_{\beta_{n_{k}}^{k}} \in L
$$

thus we are done. Therefore we may assume that $a_{\beta_{1}^{1}} a_{\beta_{2}^{1}} \cdots a_{\beta_{n_{1}}^{1}} \notin I_{1}$. Since I_{1} is $\phi-n_{1}$-absorbing primary and

$$
a_{\beta_{1}^{1}} a_{\beta_{2}^{1}} \cdots a_{\beta_{n_{1}}^{1}} a_{\beta_{1}^{2}} a_{\beta_{2}^{2}} \cdots a_{\beta_{n_{2}}^{2}} \cdots a_{\beta_{1}^{k}} a_{\beta_{2}^{k}} \cdots a_{\beta_{n_{k}}^{k}} a_{n+1}=a_{1} \cdots a_{n+1} \in I_{1} \backslash \phi\left(I_{1}\right)
$$

then we have $a_{\beta_{1}^{1}} \cdots \widehat{a_{\beta_{t}^{1}}} \cdots a_{\beta_{n_{1}}^{1}} a_{\beta_{1}^{2}} a_{\beta_{2}^{2}} \cdots a_{\beta_{n_{2}}^{2}} \cdots a_{\beta_{1}^{k}} a_{\beta_{2}^{k}} \cdots a_{\beta_{n_{k}}^{k}} a_{n+1} \in P_{1}$ for some $1 \leq t \leq n_{1}$. On the other hand

$$
a_{\beta_{1}^{1}} \cdots \widehat{a_{\beta_{t}^{1}}} \cdots a_{\beta_{n_{1}}^{1}} a_{\beta_{1}^{2}} a_{\beta_{2}^{2}} \cdots a_{\beta_{n_{2}}^{2}} \cdots a_{\beta_{1}^{k}} a_{\beta_{2}^{k}} \cdots a_{\beta_{n_{k}}^{k}} a_{n+1} \in P_{2} \cap \cdots \cap P_{k} .
$$

Consequently $a_{\beta_{1}^{1}} \cdots \widehat{a_{\beta_{t}^{1}}} \cdots a_{\beta_{n_{1}}^{1}} a_{\beta_{1}^{2}} a_{\beta_{2}^{2}} \cdots a_{\beta_{n_{2}}^{2}} \cdots a_{\beta_{1}^{k}} a_{\beta_{2}^{k}} \cdots a_{\beta_{n_{k}}^{k}} a_{n+1} \in \sqrt{L}$, which is a contradiction. Similarly we deduce that $a_{\beta_{1}^{i}} a_{\beta_{2}^{i}} \cdots a_{\beta_{n_{i}}^{i}} \in I_{i}$ for every $2 \leq i \leq k$. Then $a_{1} a_{2} \cdots a_{n} \in L$.
(2) The proof is similar to that of part (1).

Corollary 2.9. Let R be a ring with $1 \neq 0$ and let $P_{1}, P_{2}, \ldots, P_{n}$ be prime ideals of R. Suppose that for every $1 \leq i \leq n, P_{i}^{t_{i}}$ is a P_{i}-primary ideal of R where t_{i} is a positive integer. Then $P_{1}^{t_{1}} \cap P_{2}^{t_{2}} \cap \cdots \cap P_{n}^{t_{n}}$ and $P_{1}^{t_{1}} P_{2}^{t_{2}} \cdots P_{n}^{t_{n}}$ are n-absorbing primary ideals of R. In particular, $P_{1} \cap P_{2} \cap \cdots \cap P_{n}$ and $P_{1} P_{2} \cdots P_{n}$ are n-absorbing primary ideals of R.

Example 2.10. Let $R=\mathbb{Z}\left[X_{2}, X_{3}, \ldots, X_{n}\right]+3 X_{1} \mathbb{Z}\left[X_{2}, X_{3}, \ldots, X_{n}, X_{1}\right]$. Set $P_{i}:=X_{i+1} R$ for $1 \leq i \leq n-1$ and $P_{n}:=3 X_{1} \mathbb{Z}\left[X_{2}, X_{3}, \ldots, X_{n}, X_{1}\right]$. Note that for every $1 \leq i \leq n, P_{i}$ is a prime ideal of R. Let $I=P_{1} P_{2} \cdots P_{n-1} P_{n}^{2}$. Then $3 X_{1}^{2} \cdot X_{2} \cdots . X_{n} .3=9 X_{1}^{2} X_{2} \cdots X_{n} \in I$ and $3 X_{1}^{2} \cdot X_{2} \cdots . X_{n}=3 X_{1}^{2} X_{2} \cdots X_{n} \notin$ I. On the other hand $X_{2} \cdots . X_{n} .3=3 X_{2} \cdots X_{n} \notin \sqrt{I} \subseteq P_{n}$ and $3 X_{1}^{2} \cdot X_{2} \cdots$. $\widehat{X}_{i} \cdots . X_{n} .3=9 X_{1}^{2} X_{2} \cdots \widehat{X_{i}} \cdots X_{n} \notin \sqrt{I} \subseteq P_{i-1}$ for every $2 \leq i \leq n$. Hence I is not n-absorbing primary.

In [6, Example 2.7], the authors offered an example to show that if $I \subset J$ such that I is a 2-absorbing primary ideal of R and $\sqrt{I}=\sqrt{J}$, then J need not be a 2-absorbing ideal of R. They considered the ideal $J=\left\langle X Y Z, Y^{3}, X^{3}\right\rangle$ of the ring $R=\mathbb{Z}[X, Y, Z]$ and showed that $\sqrt{J}=\langle X Y\rangle$. But $X \in \sqrt{J}$, which is a contradiction. Therefore their example is incorrect. In the following example we show that if $I \subset J$ such that I is a n-absorbing primary ideal of R and $\sqrt{I}=\sqrt{J}$, then J need not be a n-absorbing ideal of R.

Example 2.11. Let $R=K\left[X_{1}, X_{2}, \ldots, X_{n+2}\right]$ where K is a field. Consider the ideal $J=\left\langle X_{1} X_{2} \cdots X_{n+1}, X_{1}^{2} X_{2} \cdots X_{n}, X_{1}^{2} X_{n+2}\right\rangle$ of R. Then

$$
\begin{aligned}
\sqrt{J} & =\left\langle X_{1} X_{2} \cdots X_{n}, X_{1} X_{n+2}\right\rangle \\
& =\left\langle X_{1}\right\rangle \cap\left\langle X_{2}, X_{n+2}\right\rangle \cap\left\langle X_{3}, X_{n+2}\right\rangle \cap \cdots \cap\left\langle X_{n}, X_{n+2}\right\rangle .
\end{aligned}
$$

Set $P_{1}=\left\langle X_{1}\right\rangle$ and $P_{i}=\left\langle X_{i}, X_{n+2}\right\rangle$ for every $2 \leq i \leq n$. Note that P_{i} 's are prime ideals of R. Let $I=P_{1}^{2} P_{2} \cdots P_{n}$. Then $I \subset J$ and $\sqrt{I}=\sqrt{J}=\cap_{i=1}^{n} P_{i}$. By Corollary 2.9, I is an n-absorbing primary ideal of R, but J is not an n absorbing primary ideal of R because $X_{1} X_{2} \cdots X_{n+1} \in J$, but $X_{1} X_{2} \cdots X_{n} \notin J$ and $X_{2} \cdots X_{n+1} \notin \sqrt{J} \subseteq\left\langle X_{1}\right\rangle$ and $X_{1} \cdots \widehat{X_{i}} \cdots X_{n+1} \notin \sqrt{J} \subseteq\left\langle X_{i}, X_{n+2}\right\rangle$ for every $2 \leq i \leq n$.

Theorem 2.12. Let R be a ring, and let $\phi: \mathfrak{J}(R) \rightarrow \mathfrak{J}(R) \cup\{\emptyset\}$ be a function. Suppose that I is an ideal of R such that $\sqrt{\phi(\sqrt{I})} \subseteq \phi(I)$. If \sqrt{I} is a $\phi-(n-1)$ absorbing ideal of R, then I is a ϕ-n-absorbing primary ideal of R.

Proof. Let \sqrt{I} be ϕ - $(n-1)$-absorbing. Assume that $a_{1} a_{2} \cdots a_{n+1} \in I \backslash \phi(I)$ for some $a_{1}, a_{2}, \ldots, a_{n+1} \in R$ and $a_{1} a_{2} \cdots a_{n} \notin I$. Hence

$$
\left(a_{1} a_{n+1}\right)\left(a_{2} a_{n+1}\right) \cdots\left(a_{n} a_{n+1}\right)=\left(a_{1} a_{2} \cdots a_{n}\right) a_{n+1}^{n} \in I \subseteq \sqrt{I} .
$$

Notice that, if $\left(a_{1} a_{2} \cdots a_{n}\right) a_{n+1}^{n} \in \phi(\sqrt{I})$, then $a_{1} a_{2} \cdots a_{n} a_{n+1} \in \sqrt{\phi(\sqrt{I})} \subseteq$ $\phi(I)$ which is a contradiction. Therefore

$$
\left(a_{1} a_{n+1}\right)\left(a_{2} a_{n+1}\right) \cdots\left(a_{n} a_{n+1}\right) \in \sqrt{I} \backslash \phi(\sqrt{I}) .
$$

Then for some $1 \leq i \leq n$,

$$
\left(a_{1} a_{n+1}\right) \cdots\left(\widehat{a_{i} a_{n+1}}\right) \cdots\left(a_{n} a_{n+1}\right)=\left(a_{1} \cdots \widehat{a_{i}} \cdots a_{n}\right) a_{n+1}^{n-1} \in \sqrt{I}
$$

and so $a_{1} \cdots \widehat{a_{i}} \cdots a_{n} a_{n+1} \in \sqrt{I}$. Consequently I is $\phi-n$-absorbing primary.
The following example gives an ideal J of a ring R where \sqrt{J} is an n absorbing ideal of R, but J is not an n-absorbing primary ideal of R.

Example 2.13. Let $R=K\left[X_{1}, X_{2}, \ldots, X_{n+2}\right]$ where K is a field and let $J=\left\langle X_{1} X_{2} \cdots X_{n+1}, X_{1}^{2} X_{2} \cdots X_{n}, X_{1}^{2} X_{n+2}\right\rangle$. Then

$$
\sqrt{J}=\left\langle X_{1}\right\rangle \cap\left\langle X_{2}, X_{n+2}\right\rangle \cap\left\langle X_{3}, X_{n+2}\right\rangle \cap \cdots \cap\left\langle X_{n}, X_{n+2}\right\rangle .
$$

By [3, Theorem 2.1(c)], \sqrt{J} is an n-absorbing ideal of R, but J is not an n-absorbing primary ideal of R as it is shown in Example 2.11.

We know that if I is an ideal of a ring R such that \sqrt{I} is a maximal ideal of R, then I is a primary ideal of R.

Theorem 2.14. Let I be an ideal of a ring R. If $\sqrt{I}=M_{1} \cap M_{2} \cap \cdots \cap M_{n}$ where M_{i} 's are maximal ideals of R, then I is an n-absorbing primary ideal of R.

Proof. Let $a_{1} a_{2} \cdots a_{n+1} \in I$ for some $a_{1}, a_{2}, \ldots, a_{n+1} \in R$ such that $a_{1} \cdots \widehat{a_{i}} \cdots$ $a_{n+1} \notin \sqrt{I}$ for every $1 \leq i \leq n$. If for some $1 \leq i \leq n, a_{1} \cdots \widehat{a_{i}} \cdots a_{n+1} \in M_{j}$ (for every $1 \leq j \leq n$), then $a_{1} \cdots \widehat{a_{i}} \cdots a_{n+1} \in \sqrt{I}$ and so we are done. Without loss of generality we may assume that for every $1 \leq i \leq n, a_{1} \cdots \widehat{a_{i}} \cdots a_{n+1} \notin$ M_{i}, respectively. Since M_{i} 's are maximal, then $M_{i}+R\left(a_{1} \cdots \widehat{a_{i}} \cdots a_{n+1}\right)=R$ for every $1 \leq i \leq n$. Therefore for every $1 \leq i \leq n$ there are $m_{i} \in M_{i}$ and $r_{i} \in R$ such that $m_{i}+r_{i}\left(a_{1} \cdots \widehat{a_{i}} \cdots a_{n+1}\right)=1$. So

$$
m_{1} m_{2} \cdots m_{n}+\sum_{t=1}^{n} \sum_{\substack{\alpha_{1}=1 \\ \alpha_{1}<\alpha_{2}<\\ \cdots<\alpha_{t} \leq n}}^{n-t+1}\left[r_{\alpha_{1}} r_{\alpha_{2}} \cdots r_{\alpha_{t}}\left(m_{1} \cdots \widehat{m_{\alpha_{1}}} \cdots \widehat{m_{\alpha_{2}}} \cdots \widehat{m_{\alpha_{t}}} \cdots m_{n}\right)\right.
$$

$$
\left.\prod_{i=1}^{t}\left(a_{1} \cdots \widehat{a_{\alpha_{i}}} \cdots a_{n+1}\right)\right]=1
$$

Since $m_{1} m_{2} \cdots m_{n} \in \sqrt{I}$, hence $\left(m_{1} m_{2} \cdots m_{n}\right)^{t} \in I$ for some $t \geq 1$. Thus

$$
\begin{gathered}
\left(m_{1} m_{2} \cdots m_{n}\right)^{t}+s\left[\sum _ { t = 1 } ^ { n } \sum _ { \substack { \alpha _ { 1 } = 1 \\
\alpha _ { 1 } < \alpha _ { 2 } < \\
\cdots < \alpha _ { t } \leq n } } ^ { n - t + 1 } \left[r_{\alpha_{1}} r_{\alpha_{2}} \cdots r_{\alpha_{t}}\left(m_{1} \cdots \widehat{m_{\alpha_{1}}} \cdots \widehat{m_{\alpha_{2}}} \cdots \widehat{m_{\alpha_{t}}} \cdots m_{n}\right)\right.\right. \\
\\
\left.\left.\prod_{i=1}^{t}\left(a_{1} \cdots \widehat{a_{\alpha_{i}}} \cdots a_{n+1}\right)\right]\right]=1
\end{gathered}
$$

for some $s \in R$. Multiply $a_{1} a_{2} \cdots a_{n}$ on both sides to get

$$
\begin{aligned}
a_{1} a_{2} \cdots a_{n}= & a_{1} a_{2} \cdots a_{n}\left(m_{1} m_{2} \cdots m_{n}\right)^{t}+ \\
& s\left[\sum _ { t = 1 } ^ { n } \sum _ { \substack { \alpha _ { 1 } = 1 \\
\alpha _ { 1 } < \alpha _ { 2 } < \\
\cdots < \alpha _ { t } \leq n } } ^ { n - t + 1 } \left[r_{\alpha_{1}} r_{\alpha_{2}} \cdots r_{\alpha_{t}}\left(m_{1} \cdots \widehat{m_{\alpha_{1}}} \cdots \widehat{m_{\alpha_{2}}} \cdots \widehat{m_{\alpha_{t}}} \cdots m_{n}\right)\right.\right. \\
& \left.\left.\left(a_{1} a_{2} \cdots a_{n}\right) \prod_{i=1}^{t}\left(a_{1} \cdots \widehat{a_{\alpha_{i}}} \cdots a_{n+1}\right)\right]\right] \in I
\end{aligned}
$$

Hence I is an n-absorbing primary ideal.
Let R be an integral domain with $1 \neq 0$ and let K be the quotient field of R. A nonzero ideal I of R is said to be invertible if $I I^{-1}=R$, where $I^{-1}=\{x \in K \mid x I \subseteq R\}$. An integral domain R is said to be a Dedekind domain if every nonzero proper ideal of R is invertible.

Theorem 2.15. Let R be a Noetherian integral domain with $1 \neq 0$ that is not a field. The following conditions are equivalent:
(1) R is a Dedekind domain;
(2) A nonzero proper ideal I of R is an n-absorbing primary ideal of R if and only if $I=M_{1}^{t_{1}} M_{2}^{t_{2}} \cdots M_{i}^{t_{i}}$ for some $1 \leq i \leq n$ and some distinct maximal ideals $M_{1}, M_{2}, \ldots, M_{i}$ of R and some positive integers $t_{1}, t_{2}, \ldots, t_{i}$;
(3) If I is a nonzero n-absorbing primary ideal of R, then $I=M_{1}^{t_{1}} M_{2}^{t_{2}} \cdots M_{i}^{t_{i}}$ for some $1 \leq i \leq n$ and some distinct maximal ideals $M_{1}, M_{2}, \ldots, M_{i}$ of R and some positive integers $t_{1}, t_{2}, \ldots, t_{i}$;
(4) A nonzero proper ideal I of R is an n-absorbing primary ideal of R if and only if $I=P_{1}^{t_{1}} P_{2}^{t_{2}} \cdots P_{i}^{t_{i}}$ for some $1 \leq i \leq n$ and some distinct prime ideals $P_{1}, P_{2}, \ldots, P_{i}$ of R and some positive integers $t_{1}, t_{2}, \ldots, t_{i}$;
(5) If I is a nonzero n-absorbing primary ideal of R, then $I=P_{1}^{t_{1}} P_{2}^{t_{2}} \cdots P_{i}^{t_{i}}$ for some $1 \leq i \leq n$ and some distinct prime ideals $P_{1}, P_{2}, \ldots, P_{i}$ of R and some positive integers $t_{1}, t_{2}, \ldots, t_{i}$.

Proof. (1) $\Rightarrow(2)$ Assume that R is a Dedekind domain that is not a field. Then every nonzero prime ideal of R is maximal. Let I be a nonzero n-absorbing primary ideal of R. Since R is a Dedekind domain, then there are distinct maximal ideals $M_{1}, M_{2}, \ldots, M_{i}$ of $R(k \geq 1)$ such that $I=M_{1}^{t_{1}} M_{2}^{t_{2}} \cdots M_{i}^{t_{i}}$ in which t_{j} 's are positive integers. Therefore $\sqrt{I}=M_{1} \cap M_{2} \cap \cdots \cap M_{i}$. Since I is n-absorbing primary and every prime ideal of R is maximal, then \sqrt{I} is the intersection of at most n maximal ideals of R, by Corollary 2.7 . So $i \leq n$.

Conversely, suppose that $I=M_{1}^{t_{1}} M_{2}^{t_{2}} \cdots M_{i}^{t_{i}}$ for some $1 \leq i \leq n$ and some distinct maximal ideals $M_{1}, M_{2}, \ldots, M_{i}$ of R and some positive integers $t_{1}, t_{2}, \ldots, t_{i}$. Then I is n-absorbing primary, by Corollary 2.9 .
$(1) \Rightarrow(4)$ The proof is similar to that of $(1) \Rightarrow(2)$.
$(2) \Rightarrow(3),(3) \Rightarrow(5)$ and $(4) \Rightarrow(5)$ are evident.
$(5) \Rightarrow(1)$ Let M be an arbitrary maximal ideal of R and I be an ideal of R such that $M^{2} \subset I \subset M$. Hence $\sqrt{I}=M$ and so I is M-primary. Then I is n-absorbing primary, and thus by part (5) we have that $I=P_{1}^{t_{1}} P_{2}^{t_{2}} \cdots P_{i}^{t_{i}}$ for some $1 \leq i \leq n$ and some distinct prime ideals $P_{1}, P_{2}, \ldots, P_{i}$ of R and some positive integers $t_{1}, t_{2}, \ldots, t_{i}$. Then $\sqrt{I}=P_{1} \cap P_{2} \cap \cdots \cap P_{i}=M$ which shows that I is a power of M, a contradiction. Therefore, there are no ideals properly between M^{2} and M. Consequently R is a Dedekind domain, by [13, Theorem 39.2, p. 470].

Since every principal ideal domain is a Dedekind domain, we have the following result as a consequence of Theorem 2.15.

Corollary 2.16. Let R be a principal ideal domain and I be a nonzero proper ideal of R. Then I is an n-absorbing primary ideal of R if and only if $I=$ $R\left(p_{1}^{t_{1}} p_{2}^{t_{2}} \cdots p_{i}^{t_{i}}\right)$, where p_{j} 's are prime elements of $R, 1 \leq i \leq n$ and t_{j} 's are some integers.

The following example shows that an n-absorbing primary ideal of a ring R need not be of the form $P_{1}^{t_{1}} P_{2}^{t_{2}} \cdots P_{i}^{t_{i}}$, where P_{j} 's are prime ideals of R, $1 \leq i \leq n$ and t_{j} 's are some integers.
Example 2.17. Let $R=K\left[X_{1}, X_{2}, \ldots, X_{n}\right]$ where K is a field and let $I=$ $\left\langle X_{1}, X_{2}, \ldots, X_{n-1}, X_{n}^{2}\right\rangle$. Since I is $\left\langle X_{1}, X_{2}, \ldots, X_{n}\right\rangle$-primary, then I is an n absorbing primary ideal of R. But I is not in the form of $P_{1}^{t_{1}} P_{2}^{t_{2}} \cdots P_{i}^{t_{i}}$, where P_{j} 's are prime ideals of $R, 1 \leq i \leq n$ and t_{j} 's are some integers.

Theorem 2.18. Let R be a ring, $a \in R$ a nonunit and $m \geq 2$ a positive integer. If $\left(0:_{R} a\right) \subseteq\langle a\rangle$, then $\langle a\rangle$ is ϕ - n-absorbing primary for some ϕ with $\phi \leq \phi_{m}$ if and only if $\langle a\rangle$ is n-absorbing primary.
Proof. We may assume that $\langle a\rangle$ is ϕ_{m} - n-absorbing primary. Let $x_{1} x_{2} \cdots x_{n+1} \in$ $\langle a\rangle$ for some $x_{1}, x_{2}, \ldots, x_{n+1} \in R$. If $x_{1} x_{2} \cdots x_{n+1} \notin\left\langle a^{m}\right\rangle$, then either $x_{1} x_{2} \cdots x_{n}$ $\in\langle a\rangle$ or $x_{1} \cdots \widehat{x_{i}} \cdots x_{n+1} \in \sqrt{\langle a\rangle}$ for some $1 \leq i \leq n$. Therefore, assume that $x_{1} x_{2} \cdots x_{n+1} \in\left\langle a^{m}\right\rangle$. Hence $x_{1} x_{2} \cdots x_{n}\left(x_{n+1}+a\right) \in\langle a\rangle$. If $x_{1} x_{2} \cdots x_{n}\left(x_{n+1}+\right.$ $a) \notin\left\langle a^{m}\right\rangle$, then either $x_{1} x_{2} \cdots x_{n} \in\langle a\rangle$ or $x_{1} \cdots \widehat{x_{i}} \cdots x_{n}\left(x_{n+1}+a\right) \in \sqrt{\langle a\rangle}$
for some $1 \leq i \leq n$. So, either $x_{1} x_{2} \cdots x_{n} \in\langle a\rangle$ or $x_{1} \cdots \widehat{x_{i}} \cdots x_{n+1} \in \sqrt{\langle a\rangle}$ for some $1 \leq i \leq n$. Hence, suppose that $x_{1} x_{2} \cdots x_{n}\left(x_{n+1}+a\right) \in\left\langle a^{m}\right\rangle$. Thus $x_{1} x_{2} \cdots x_{n+1} \in\left\langle a^{m}\right\rangle$ implies that $x_{1} x_{2} \cdots x_{n} a \in\left\langle a^{m}\right\rangle$. Therefore, there exists $r \in R$ such that $x_{1} x_{2} \cdots x_{n}-r a^{m-1} \in\left(0:_{R} a\right) \subseteq\langle a\rangle$. Consequently $x_{1} x_{2} \cdots x_{n} \in\langle a\rangle$.

Corollary 2.19. Let R be an integral domain, $a \in R$ a nonunit element and $m \geq 2$ a positive integer. Then $\langle a\rangle$ is ϕ-n-absorbing primary for some ϕ with $\phi \leq \phi_{m}$ if and only if $\langle a\rangle$ is n-absorbing primary.

Theorem 2.20. Let V be a valuation domain and n be a natural number. Suppose that I is an ideal of V such that I^{n+1} is not principal. Then I is a $\phi_{n+1}-n$-absorbing primary if and only if it is n-absorbing primary.

Proof. (\Rightarrow) Assume that I is $\phi_{n+1}-n$-absorbing primary that is not n-absorbing primary. Therefore there are $a_{1}, \ldots, a_{n+1} \in R$ such that $a_{1} \cdots a_{n+1} \in I$, but neither $a_{1} \cdots a_{n} \in I$ nor $a_{1} \cdots \widehat{a_{i}} \cdots a_{n+1} \in \sqrt{I}$ for every $1 \leq i \leq n$. Hence $\left\langle a_{i}\right\rangle \nsubseteq I$ for every $1 \leq i \leq n+1$. Since V is a valuation domain, thus $I \subset\left\langle a_{i}\right\rangle$ for every $1 \leq i \leq n+1$, and so $I^{n+1} \subseteq\left\langle a_{1} \cdots a_{n+1}\right\rangle$. Since I^{n+1} is not principal, then $a_{1} \cdots a_{n+1} \in I \backslash I^{n+1}$. Therefore $I \phi_{n+1}-n$-absorbing primary implies that either $a_{1} \cdots a_{n} \in I$ or $a_{1} \cdots \widehat{a_{i}} \cdots a_{n+1} \in \sqrt{I}$ for some $1 \leq i \leq n$, which is a contradiction. Consequently I is n-absorbing primary.
(\Leftarrow) is trivial.
Let J be an ideal of R and $\phi: \mathfrak{J}(R) \rightarrow \mathfrak{J}(R) \cup\{\emptyset\}$ be a function. Define $\phi_{J}: \mathfrak{I}(R / J) \rightarrow \mathfrak{I}(R / J) \cup\{\emptyset\}$ by $\phi_{J}(I / J)=(\phi(I)+J) / J$ for every ideal $I \in \mathfrak{J}(R)$ with $J \subseteq I$ (and $\phi_{J}(I / J)=\emptyset$ if $\phi(I)=\emptyset$).

Theorem 2.21. Let $J \subseteq I$ be proper ideals of a ring R, and let $\phi: \mathfrak{J}(R) \rightarrow$ $\mathfrak{J}(R) \cup\{\emptyset\}$ be a function.
(1) If I is a ϕ-n-absorbing primary ideal of R, then I / J is a ϕ_{J}-n-absorbing primary ideal of R / J.
(2) If $J \subseteq \phi(I)$ and I / J is a ϕ_{J}-n-absorbing primary ideal of R / J, then I is a ϕ-n-absorbing primary ideal of R.
(3) If $\phi(I) \subseteq J$ and I is a ϕ-n-absorbing primary ideal of R, then I / J is a weakly n-absorbing primary ideal of R / J.
(4) If $\phi(J) \subseteq \phi(I)$, J is a ϕ-n-absorbing primary ideal of R and I / J is a weakly n-absorbing primary ideal of R / J, then I is a ϕ-n-absorbing primary ideal of R.

Proof. (1) Let $a_{1}, a_{2}, \ldots, a_{n+1} \in R$ be such that $\left(a_{1}+J\right)\left(a_{2}+J\right) \cdots\left(a_{n+1}+\right.$ $J) \in(I / J) \backslash \phi_{J}(I / J)=(I / J) \backslash(\phi(I)+J) / J$. Then $a_{1} a_{2} \cdots a_{n+1} \in I \backslash \phi(I)$ and $I \phi$-n-absorbing primary gives either $a_{1} \cdots a_{n} \in I$ or $a_{1} \cdots \widehat{a_{i}} \cdots a_{n+1} \in$ \sqrt{I} for some $1 \leq i \leq n$. Therefore either $\left(a_{1}+J\right) \cdots\left(a_{n}+J\right) \in I / J$ or $\left(a_{1}+J\right) \cdots\left(\widehat{a_{i}+J}\right) \cdots\left(a_{n+1}+J\right) \in \sqrt{I} / J=\sqrt{I / J}$ for some $1 \leq i \leq n$. This shows that I / J is ϕ_{J} - n-absorbing primary.
(2) Suppose that $a_{1} a_{2} \cdots a_{n+1} \in I \backslash \phi(I)$ for some $a_{1}, a_{2}, \ldots, a_{n+1} \in R$. Then $\left(a_{1}+J\right)\left(a_{2}+J\right) \cdots\left(a_{n+1}+J\right) \in(I / J) \backslash(\phi(I) / J)=(I / J) \backslash \phi_{J}(I / J)$. Since I / J is assumed to be ϕ_{J} - n-absorbing primary, we get either $\left(a_{1}+J\right) \cdots\left(a_{n}+J\right) \in I / J$ or $\left(a_{1}+J\right) \cdots\left(\widehat{a_{i}+J}\right) \cdots\left(a_{n+1}+J\right) \in \sqrt{I / J}=\sqrt{I} / J$ for some $1 \leq i \leq n$. Consequently, either $a_{1} \cdots a_{n} \in I$ or $a_{1} \cdots \widehat{a_{i}} \cdots a_{n+1} \in \sqrt{I}$ for some $1 \leq i \leq n$, that I is ϕ - n-absorbing primary.
(3) is a direct consequence of part (1).
(4) Let $a_{1} \cdots a_{n+1} \in I \backslash \phi(I)$ where $a_{1}, \ldots, a_{n+1} \in R$. Note that $a_{1} \cdots a_{n+1} \notin$ $\phi(J)$ because $\phi(J) \subseteq \phi(I)$. If $a_{1} \cdots a_{n+1} \in J$, then either $a_{1} \cdots a_{n} \in J \subseteq I$ or $a_{1} \cdots \widehat{a_{i}} \cdots a_{n+1} \in \sqrt{J} \subseteq \sqrt{I}$ for some $1 \leq i \leq n$, since J is ϕ - n-absorbing primary. If $a_{1} \cdots a_{n+1} \notin J$, then $\left(a_{1}+I\right) \cdots\left(a_{n+1}+I\right) \in(I / J) \backslash\{0\}$ and so either $\left(a_{1}+I\right) \cdots\left(a_{n}+I\right) \in I / J$ or $\left(a_{1}+J\right) \cdots\left(\widehat{a_{i}+J}\right) \cdots\left(a_{n+1}+J\right) \in \sqrt{I / J}=$ \sqrt{I} / J for some $1 \leq i \leq n$. Therefore, either $a_{1} \cdots a_{n} \in I$ or $a_{1} \cdots \widehat{a_{i}} \cdots a_{n+1} \in$ \sqrt{I} for some $1 \leq i \leq n$. Consequently I is a ϕ - n-absorbing primary ideal of R.

Corollary 2.22. Let R be a ring, and let $\phi: \mathfrak{J}(R) \rightarrow \mathfrak{J}(R) \cup\{\emptyset\}$ be a function. An ideal I of R is ϕ-n-absorbing primary if and only if $I / \phi(I)$ is a weakly n-absorbing primary ideal of $R / \phi(I)$.

Proof. In parts (2) and (3) of Theorem 2.21 set $J=\phi(I)$.
Corollary 2.23. Let R be a ring, $\phi: \mathfrak{J}(R) \rightarrow \mathfrak{J}(R) \cup\{\emptyset\}$ be a function and L be a proper ideal of R such that $\phi(\langle X\rangle) \subseteq \phi(\langle L, X\rangle) \subseteq\langle X\rangle$. If $\langle L, X\rangle$ is a ϕ-n-absorbing primary ideal of $R[X]$, then L is a weakly n-absorbing primary ideal of R. The converse holds if in addition R is an integral domain.

Proof. Consider the isomorphism $\langle L, X\rangle /\langle X\rangle \simeq L$ in $R[X] /\langle X\rangle \simeq R$. Set $I:=\langle L, X\rangle$ and $J:=\langle X\rangle$. Assume that $\langle L, X\rangle$ is a $\phi-n$-absorbing primary ideal of $R[X]$. So, by part (3) of Theorem $2.21, I / J \simeq L$ is a weakly n absorbing primary ideal of $R[X] / J \simeq R$. Now, suppose that R is an integral domain and L is a weakly n-absorbing primary ideal of R. Since $J=\langle X\rangle$ is a prime ideal of $R[X]$, then it is ϕ - n-absorbing primary. On the other hand $I / J \simeq L$ is a weakly n-absorbing primary ideal of $R[X] / J \simeq R$. Hence, part (4) of Theorem 2.21 implies that $I=\langle L, X\rangle$ is a ϕ-n-absorbing primary ideal of $R[X]$.

Let S be a multiplicatively closed subset of a ring R. Let $\phi: \mathfrak{J}(R) \rightarrow \mathfrak{J}(R) \cup$ $\{\emptyset\}$ be a function and define $\phi_{S}: \Im\left(R_{S}\right) \rightarrow \Im\left(R_{S}\right) \cup\{\emptyset\}$ by $\phi_{S}(J)=(\phi(J \cap R))_{S}$ (and $\phi_{S}(J)=\emptyset$ if $\phi(J \cap R)=\emptyset$) for every ideal J of R_{S}. Note that $\phi_{S}(J) \subseteq J$. Let M be an R-module. The set of all zero divisors on M is:
$\mathrm{Z}_{R}(M)=\{r \in R \mid$ there exists an element $0 \neq x \in M$ such that $r x=0\}$.
Proposition 2.24. Let R be a ring and $\phi: \mathfrak{J}(R) \rightarrow \mathfrak{J}(R) \cup\{\emptyset\}$ be a function. Suppose that S is a multiplicatively closed subset of R and I is a proper ideal of R.
(1) If I is a ϕ-n-absorbing primary ideal of R with $I \cap S=\emptyset$ and $\phi(I)_{S} \subseteq$ $\phi_{S}\left(I_{S}\right)$, then I_{S} is a $\phi_{S}-n$-absorbing primary ideal of R_{S}.
(2) If I_{S} is a ϕ_{S}-n-absorbing primary ideal of R_{S} with $\phi_{S}\left(I_{S}\right) \subseteq \phi(I)_{S}$, $S \cap Z_{R}\left(\frac{I}{\phi(I)}\right)=\emptyset$ and $S \cap Z_{R}\left(\frac{R}{I}\right)=\emptyset$, then I is a ϕ - n-absorbing primary ideal of R.
Proof. (1) Assume that $\frac{a_{1}}{s_{1}} \frac{a_{2}}{s_{2}} \cdots \frac{a_{n+1}}{s_{n+1}} \in I_{S} \backslash \phi_{S}\left(I_{S}\right)$ for some $\frac{a_{1}}{s_{1}}, \frac{a_{2}}{s_{2}}, \ldots, \frac{a_{n+1}}{s_{n+1}} \in$ R_{S} such that $\frac{a_{1}}{s_{1}} \frac{a_{2}}{s_{2}} \cdots \frac{a_{n}}{s_{n}} \notin I_{S}$. Since $\frac{a_{1}}{s_{1}} \frac{a_{2}}{s_{2}} \cdots \frac{a_{n+1}}{s_{n+1}} \in I_{S}$, then there is $s \in S$ such that $s a_{1} a_{2} \cdots a_{n+1} \in I$. If $s a_{1} a_{2} \cdots a_{n+1} \in \phi(I)$, then $\frac{a_{1}}{s_{1}} \frac{a_{2}}{s_{2}} \cdots \frac{a_{n+1}}{s_{n+1}}=$ $\frac{s a_{1} a_{2} \cdots a_{n+1}}{s s_{1} s_{2} \cdots s_{n+1}} \in \phi(I)_{S} \subseteq \phi_{S}\left(I_{S}\right)$, a contradiction. Hence $a_{1} a_{2} \cdots a_{n}\left(s a_{n+1}\right) \in$ $I \backslash \phi(I)$. As I is ϕ - n-absorbing primary, we get either $a_{1} a_{2} \cdots a_{n} \in I$ or $a_{1} \cdots \widehat{a_{i}} \cdots a_{n}\left(s a_{n+1}\right) \in \sqrt{I}$ for some $1 \leq i \leq n$. The first case implies that $\frac{a_{1}}{s_{1}} \frac{a_{2}}{s_{2}} \cdots \frac{a_{n}}{s_{n}} \in I_{S}$ which is a contradiction, and the second case implies that $\frac{a_{1}}{s_{1}} \cdots \frac{\widehat{a_{i}}}{s_{i}} \cdots \frac{a_{n+1}}{s_{n+1}} \in(\sqrt{I})_{S}=\sqrt{I_{S}}$ for some $1 \leq i \leq n$. Consequently I_{S} is a ϕ_{S} - n-absorbing primary ideal of R_{S}.
(2) Let $a_{1} a_{2} \cdots a_{n+1} \in I \backslash \phi(I)$ for some $a_{1}, a_{2}, \ldots, a_{n+1} \in R$ and let $a_{1} a_{2} \cdots a_{n}$ $\notin I$. Then $\frac{a_{1}}{1} \frac{a_{2}}{1} \ldots \frac{a_{n+1}}{1} \in I_{S}$. Assume that $\frac{a_{1}}{1} \frac{a_{2}}{1} \cdots \frac{a_{n+1}}{1} \in \phi_{S}\left(I_{S}\right)$. Since $\phi_{S}\left(I_{S}\right) \subseteq \phi(I)_{S}$, then there exists a $s \in S$ such that $s a_{1} a_{2} \cdots a_{n+1} \in \phi(I)$. Since $S \cap Z_{R}\left(\frac{I}{\phi(I)}\right)=\emptyset$ we have that $a_{1} a_{2} \cdots a_{n+1} \in \phi(I)$, which is a contradiction. Therefore $\frac{a_{1}}{1} \frac{a_{2}}{1} \cdots \frac{a_{n+1}}{1} \in I_{S} \backslash \phi_{S}\left(I_{S}\right)$. Hence, either $\frac{a_{1}}{1} \frac{a_{2}}{1} \cdots \frac{a_{n}}{1} \in I_{S}$ or $\frac{a_{1}}{1} \cdots \frac{\widehat{a_{i}}}{1} \cdots \frac{a_{n+1}}{1} \in \sqrt{I_{S}}=(\sqrt{I})_{S}$ for some $1 \leq i \leq n$. If $\frac{a_{1}}{1} \frac{a_{2}}{1} \cdots \frac{a_{n}}{1} \in I_{S}$, then there exists $u \in S$ such that $u a_{1} a_{2} \cdots a_{n} \in I$ and so the assumption $S \cap Z_{R}\left(\frac{R}{I}\right)=\emptyset$ shows that $a_{1} a_{2} \cdots a_{n} \in I$, a contradiction. Therefore, there is $1 \leq i \leq n$ such that $\frac{a_{1}}{1} \cdots \frac{\widehat{a_{i}}}{1} \cdots \frac{a_{n+1}}{1} \in(\sqrt{I})_{S}$, and thus there is a $t \in S$ such that $t a_{1} \cdots \widehat{a_{i}} \cdots a_{n+1} \in \sqrt{I}$. Note that $S \cap Z_{R}\left(\frac{R}{I}\right)=\emptyset$ implies that $S \cap Z_{R}\left(\frac{R}{\sqrt{I}}\right)=\emptyset$, then $a_{1} \cdots \widehat{a_{i}} \cdots a_{n+1} \in \sqrt{I}$. Consequently I is a ϕ - n-absorbing primary ideal of R.

Let $f: R \rightarrow T$ be a homomorphism of rings and let $\phi_{T}: \mathfrak{J}(T) \rightarrow \mathfrak{J}(T) \cup\{\emptyset\}$ be a function. Define $\phi_{R}: \mathfrak{J}(R) \rightarrow \mathfrak{J}(R) \cup\{\emptyset\}$ by $\phi_{R}(I)=\phi_{T}\left(I^{e}\right)^{c}$ (and $\phi_{R}(I)=\emptyset$ if $\left.\phi_{T}\left(I^{e}\right)=\emptyset\right)$. We recall that if R is a Prüfer domain or $T=R_{S}$ for some multiplicatively closed subset S of R, then for every ideal J of T we have $J^{c e}=J$.

Theorem 2.25. Let $f: R \rightarrow T$ be a homomorphism of rings. If J is a $\phi_{T}-n$ absorbing primary ideal of T such that $\phi_{T}(J) \subseteq \phi_{T}\left(J^{c e}\right)\left(\right.$ e.g. where $\left.J=J^{c e}\right)$, then J^{c} is a ϕ_{R}-n-absorbing primary ideal of R.
Proof. Let $a_{1} a_{2} \cdots a_{n+1} \in J^{c} \backslash \phi_{R}\left(J^{c}\right)$ for some $a_{1}, a_{2} \ldots, a_{n+1} \in R$. If

$$
f\left(a_{1}\right) f\left(a_{2}\right) \cdots f\left(a_{n+1}\right) \in \phi_{T}(J)
$$

then $a_{1} a_{2} \cdots a_{n+1} \in \phi_{T}(J)^{c} \subseteq \phi_{T}\left(J^{c e}\right)^{c}=\phi_{R}\left(J^{c}\right)$, which is a contradiction. Therefore $f\left(a_{1}\right) f\left(a_{2}\right) \cdots f\left(a_{n+1}\right) \in J \backslash \phi_{T}(J)$. Hence, either $f\left(a_{1}\right) f\left(a_{2}\right) \cdots f\left(a_{n}\right)$ $\in J$ or $f\left(a_{1}\right) \cdots \widehat{f\left(a_{i}\right)} \cdots f\left(a_{n+1}\right) \in \sqrt{J}$ for some $1 \leq i \leq n$. Thus, either
$a_{1} a_{2} \cdots a_{n} \in J^{c}$ or $a_{1} \cdots \widehat{a_{i}} \cdots a_{n+1} \in \sqrt{J^{c}}$ for some $1 \leq i \leq n$. Consequently J^{c} is a $\phi_{R}-n$-absorbing primary ideal of R.

Let R, T be rings and $\psi_{R}: \mathfrak{J}(R) \rightarrow \mathfrak{J}(R) \cup\{\emptyset\}$ be a function. Define $\psi_{T}: \mathfrak{J}(T) \rightarrow \mathfrak{J}(T) \cup\{\emptyset\}$ by $\psi_{T}(J)=\psi_{R}\left(J^{c}\right)^{e}\left(\right.$ and $\psi_{T}(J)=\emptyset$ if $\left.\psi_{R}\left(J^{c}\right)=\emptyset\right)$. We recall that if $f: R \rightarrow T$ is a faithfully flat homomorphism of rings, then for every ideal I of R we have $I^{e c}=I$.

Theorem 2.26. Let $f: R \rightarrow T$ be a faithfully flat homomorphism of rings.
(1) If J is a ψ_{T}-n-absorbing primary ideal of T, then J^{c} is a $\psi_{R}-n$-absorbing primary ideal of R.
(2) If I^{e} is a ψ_{T}-n-absorbing primary ideal of T for some ideal I or R, then I is a $\psi_{R}-n$-absorbing primary ideal of R.

Proof. (1) Suppose that J is a $\psi_{T}-n$-absorbing primary ideal of T. In Theorem 2.25 get $\phi_{T}:=\psi_{T}$. Let I be an ideal of R. Then

$$
\phi_{R}(I)=\phi_{T}\left(I^{e}\right)^{c}=\psi_{T}\left(I^{e}\right)^{c}=\psi_{R}\left(I^{e c}\right)^{e c}=\psi_{R}(I) .
$$

So $\phi_{R}=\psi_{R}$. Moreover, $\psi_{T}(J)=\psi_{R}\left(J^{c}\right)^{e}=\psi_{R}\left(J^{c e c}\right)^{e}=\psi_{T}\left(J^{c e}\right)$. Therefore J^{c} is a ψ_{R} - n-absorbing primary ideal of R.
(2) By part (1).

Proposition 2.27. Let I be an ideal of a ring R such that $\phi(I)$ be an n absorbing primary ideal of R. If I is a ϕ-n-absorbing primary ideal of R, then I is an n-absorbing primary ideal of R.

Proof. Assume that $a_{1} a_{2} \cdots a_{n+1} \in I$ for some elements $a_{1}, a_{2}, \ldots, a_{n+1} \in R$ such that $a_{1} a_{2} \cdots a_{n} \notin I$. If $a_{1} a_{2} \cdots a_{n+1} \in \phi(I)$, then $\phi(I) \quad n$-absorbing primary and $a_{1} a_{2} \cdots a_{n} \notin \phi(I)$ implies that $a_{1} \cdots \widehat{a_{i}} \cdots a_{n+1} \in \sqrt{\phi(I)} \subseteq \sqrt{I}$ for some $1 \leq i \leq n$, and so we are done. When $a_{1} a_{2} \cdots a_{n+1} \notin \phi(I)$ clearly the result follows.

We say that a ϕ-prime ideal P of a ring R is a divided ϕ-prime ideal if $P \subset x R$ for every $x \in R \backslash P$; thus a divided ϕ-prime ideal is comparable to every ideal of R.

Theorem 2.28. Let P be a divided ϕ-prime ideal of a ring R. Suppose that I is a ϕ-n-absorbing ideal of R with $\sqrt{I}=P$ and $\phi(P) \subseteq \phi(I)$. Then I is a ϕ-primary ideal of R.

Proof. Let $x y \in I \backslash \phi(I)$ for $x, y \in R$ and $y \notin P$. Since $x y \in P \backslash \phi(P)$, then $x \in P$. If $y^{n-1} \in \phi(P)$, then $y \in \sqrt{I}=P$, which is a contradiction. Therefore $y^{n-1} \notin \phi(P)$, and so $y^{n-1} \notin P$. Thus $P \subset y^{n-1} R$, because P is a divided ϕ-prime ideal of R. Hence $x=y^{n-1} z$ for some $z \in R$. As $y^{n} z=y x \in I \backslash \phi(I)$, $y^{n} \notin I$, and I is a ϕ - n-absorbing ideal of R, we have $x=y^{n-1} z \in I$. Hence I is a ϕ-primary ideal of R.

Let I be an ideal of a ring R and $\phi: \mathfrak{J}(R) \rightarrow \mathfrak{J}(R) \cup\{\emptyset\}$ be a function. Assume that I is a ϕ - n-absorbing primary ideal of R and $a_{1}, \ldots, a_{n+1} \in R$. We say that $\left(a_{1}, \ldots, a_{n+1}\right)$ is an ϕ - $(n+1)$-tuple of I if $a_{1} \cdots a_{n+1} \in \phi(I)$, $a_{1} a_{2} \cdots a_{n} \notin I$ and for each $1 \leq i \leq n, a_{1} \cdots \widehat{a_{i}} \cdots a_{n+1} \notin \sqrt{I}$.

In the following theorem $a_{1} \cdots \widehat{a_{i}} \cdots \widehat{a_{j}} \cdots a_{n}$ denotes that a_{i} and a_{j} are eliminated from $a_{1} \cdots a_{n}$.

Theorem 2.29. Let I be a ϕ-n-absorbing primary ideal of a ring R and suppose that $\left(a_{1}, \ldots, a_{n+1}\right)$ is a ϕ - $(n+1)$-tuple of I for some $a_{1}, \ldots, a_{n+1} \in R$. Then for every elements $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m} \in\{1,2, \ldots, n+1\}$ which $1 \leq m \leq n$,

$$
a_{1} \cdots \widehat{a_{\alpha_{1}}} \cdots \widehat{a_{\alpha_{2}}} \cdots \widehat{a_{\alpha_{m}}} \cdots a_{n+1} I^{m} \subseteq \phi(I) .
$$

Proof. We use induction on m. Let $m=1$ and suppose that $a_{1} \cdots \widehat{a_{\alpha_{1}}} \cdots a_{n+1} x$ $\notin \phi(I)$ for some $x \in I$. Then $a_{1} \cdots \widehat{a_{\alpha_{1}}} \cdots a_{n+1}\left(a_{\alpha_{1}}+x\right) \notin \phi(I)$. Since I is a ϕ - n-absorbing primary ideal of R and $a_{1} \cdots \widehat{a_{\alpha_{1}}} \cdots a_{n+1} \notin I$, we conclude that $a_{1} \cdots \widehat{a_{\alpha_{1}}} \cdots \widehat{a_{\alpha_{2}}} \cdots a_{n+1}\left(a_{\alpha_{1}}+x\right) \in \sqrt{I}$, for some $1 \leq \alpha_{2} \leq n+1$ different from α_{1}. Hence $a_{1} \cdots \widehat{a_{\alpha_{2}}} \cdots a_{n+1} \in \sqrt{I}$, a contradiction. Thus $a_{1} \cdots \widehat{a_{\alpha_{1}}} \cdots a_{n+1} I \subseteq$ $\phi(I)$.

Now suppose $m>1$ and assume that for all integers less than m the claim holds. Let $a_{1} \cdots \widehat{a_{\alpha_{1}}} \cdots \widehat{a_{\alpha_{2}}} \cdots \widehat{a_{\alpha_{m}}} \cdots a_{n+1} x_{1} x_{2} \cdots x_{m} \notin \phi(I)$ for some $x_{1}, x_{2}, \ldots, x_{m} \in I$. By induction hypothesis, we conclude that there exists $\zeta \in \phi(I)$ such that

$$
\begin{aligned}
& a_{1} \cdots \widehat{a_{\alpha_{1}}} \cdots \widehat{a_{\alpha_{2}}} \cdots \widehat{a_{\alpha_{m}}} \cdots a_{n+1}\left(a_{\alpha_{1}}+x_{1}\right)\left(a_{\alpha_{2}}+x_{2}\right) \cdots\left(a_{\alpha_{m}}+x_{m}\right) \\
= & \zeta+a_{1} \cdots \widehat{a_{\alpha_{1}}} \cdots \widehat{a_{\alpha_{2}}} \cdots \widehat{a_{\alpha_{m}}} \cdots a_{n+1} x_{1} x_{2} \cdots x_{m} \notin \phi(I) .
\end{aligned}
$$

Now, we consider two cases.
Case 1. Assume that $\alpha_{m}<n+1$. Since I is ϕ - n-absorbing primary, then either

$$
a_{1} \cdots \widehat{a_{\alpha_{1}}} \cdots \widehat{a_{\alpha_{2}}} \cdots \widehat{a_{\alpha_{m}}} \cdots a_{n}\left(a_{\alpha_{1}}+x_{1}\right)\left(a_{\alpha_{2}}+x_{2}\right) \cdots\left(a_{\alpha_{m}}+x_{m}\right) \in I,
$$

or
$a_{1} \cdots \widehat{a_{\alpha_{1}}} \cdots \widehat{a_{\alpha_{2}}} \cdots \widehat{a_{\alpha_{m}}} \cdots \widehat{a_{j}} \cdots a_{n+1}\left(a_{\alpha_{1}}+x_{1}\right)\left(a_{\alpha_{2}}+x_{2}\right) \cdots\left(a_{\alpha_{m}}+x_{m}\right) \in \sqrt{I}$
for some $j<n+1$ distinct from α_{i} 's; or

$$
a_{1} \cdots \widehat{a_{\alpha_{1}}} \cdots \widehat{a_{\alpha_{2}}} \cdots \widehat{a_{\alpha_{m}}} \cdots a_{n+1}\left(a_{\alpha_{1}}+x_{1}\right) \cdots\left(\widehat{a_{\alpha_{i}}+x_{i}}\right) \cdots\left(a_{\alpha_{m}}+x_{m}\right) \in \sqrt{I}
$$

for some $1 \leq i \leq m$. Thus either $a_{1} a_{2} \cdots a_{n} \in I$ or $a_{1} \cdots \widehat{a_{j}} \cdots a_{n+1} \in \sqrt{I}$ or $a_{1} \cdots \widehat{a_{\alpha_{i}}} \cdots a_{n+1} \in \sqrt{I}$, which any of these cases has a contradiction.
Case 2. Assume that $\alpha_{m}=n+1$. Since I is ϕ - n-absorbing primary, then either

$$
a_{1} \cdots \widehat{a_{\alpha_{1}}} \cdots \widehat{a_{\alpha_{2}}} \cdots \widehat{a_{\alpha_{m-1}}} \cdots \widehat{a_{n+1}}\left(a_{\alpha_{1}}+x_{1}\right)\left(a_{\alpha_{2}}+x_{2}\right) \cdots\left(\widehat{a_{\alpha_{m}}+x_{m}}\right) \in I
$$

or
$a_{1} \cdots \widehat{a_{\alpha_{1}}} \cdots \widehat{a_{\alpha_{2}}} \cdots \widehat{a_{\alpha_{m-1}}} \cdots \widehat{a_{j}} \cdots \widehat{a_{n+1}}\left(a_{\alpha_{1}}+x_{1}\right)\left(a_{\alpha_{2}}+x_{2}\right) \cdots\left(a_{\alpha_{m}}+x_{m}\right) \in \sqrt{I}$
for some $j<n+1$ different from $\alpha_{i}{ }^{\prime}$ s; or
$a_{1} \cdots \widehat{a_{\alpha_{1}}} \cdots \widehat{a_{\alpha_{2}}} \cdots \widehat{a_{\alpha_{m-1}}} \cdots \widehat{a_{n+1}}\left(a_{\alpha_{1}}+x_{1}\right) \cdots\left(\widehat{a_{\alpha_{i}}+x_{i}}\right) \cdots\left(a_{\alpha_{m}}+x_{m}\right) \in \sqrt{I}$
for some $1 \leq i \leq m-1$. Thus either $a_{1} a_{2} \cdots a_{n} \in I$ or $a_{1} \cdots \widehat{a_{j}} \cdots a_{n+1} \in \sqrt{I}$ or $a_{1} \cdots \widehat{a_{\alpha_{i}}} \cdots a_{n+1} \in \sqrt{I}$, which any of these cases has a contradiction. Thus

$$
a_{1} \cdots \widehat{a_{\alpha_{1}}} \cdots \widehat{a_{\alpha_{2}}} \cdots \widehat{a_{\alpha_{m}}} \cdots a_{n+1} I^{m} \subseteq \phi(I)
$$

Theorem 2.30. Let I be an ϕ-n-absorbing primary ideal of R that is not an n-absorbing primary ideal. Then
(1) $I^{n+1} \subseteq \phi(I)$.
(2) $\sqrt{I}=\sqrt{\phi(I)}$.

Proof. (1) Since I is not an n-absorbing primary ideal of R, I has an ϕ -$(n+1)$-triple-zero $\left(a_{1}, \ldots, a_{n+1}\right)$ for some $a_{1}, \ldots, a_{n+1} \in R$. Suppose that $x_{1} x_{2} \cdots x_{n+1} \notin \phi(I)$ for some $x_{1}, x_{2}, \ldots, x_{n+1} \in I$. Then by Theorem 2.29, there is $\zeta \in \phi(I)$ such that $\left(a_{1}+x_{1}\right) \cdots\left(a_{n+1}+x_{n+1}\right)=\zeta+x_{1} x_{2} \cdots x_{n+1} \notin \phi(I)$. Hence either $\left(a_{1}+x_{1}\right) \cdots\left(a_{n}+x_{n}\right) \in I$ or $\left(a_{1}+x_{1}\right) \cdots\left(\widehat{a_{i}+x_{i}}\right) \cdots\left(a_{n+1}+\right.$ $\left.x_{n+1}\right) \in \sqrt{I}$ for some $1 \leq i \leq n$. Thus either $a_{1} \cdots a_{n} \in I$ or $a_{1} \cdots \widehat{a_{i}} \cdots a_{n+1} \in$ \sqrt{I} for some $1 \leq i \leq n$, a contradiction. Hence $I^{n+1} \subseteq \phi(I)$.
(2) Clearly, $\sqrt{\phi(I)} \subseteq \sqrt{I}$. As $I^{n+1} \subseteq \phi(I)$, we get $\sqrt{I} \subseteq \sqrt{\phi(I)}$, as required.

Corollary 2.31. Let I be an ideal of a ring R that is not n-absorbing primary.
(1) If I is weakly n-absorbing primary, then $I^{n+1}=\{0\}$ and $\sqrt{I}=\operatorname{Nil}(R)$.
(2) If I is ϕ - n-absorbing primary where $\phi \leq \phi_{n+2}$, then $I^{n+1}=I^{n+2}$.

Corollary 2.32. Let I be a ϕ-n-absorbing primary ideal where $\phi \leq \phi_{n+2}$. Then I is ω-n-absorbing primary.

Proof. If I is n-absorbing primary, then it is ω - n-absorbing primary. So assume that I is not n-absorbing primary. Then $I^{n+1}=I^{n+2}$ by Corollary 2.31(2). By hypothesis I is ϕ - n-absorbing primary and $\phi \leq \phi_{n+1}$. So I is $\phi_{n+1}-n$ absorbing primary. On the other hand $\phi_{\omega}(I)=I^{n+1}=\phi_{n+1}(I)$. Therefore I is ω - n-absorbing primary.

Theorem 2.33. Let R be a ring and let $\phi: \mathfrak{J}(R) \rightarrow \mathfrak{J}(R) \cup\{\emptyset\}$ be a function. Suppose that $\left\{I_{\lambda}\right\}_{\lambda \in \Lambda}$ is a family of ideals of R such that for every $\lambda, \lambda^{\prime} \in \Lambda$, $\sqrt{\phi\left(I_{\lambda}\right)}=\sqrt{\phi\left(I_{\lambda^{\prime}}\right)}$ and $\phi\left(I_{\lambda}\right) \subseteq \phi(I)$ where $I=\bigcap_{\lambda \in \Lambda} I_{\lambda}$. If for every $\lambda \in \Lambda$, I_{λ} is a ϕ-n-absorbing primary ideal of R that is not n-absorbing primary, then I is a ϕ-n-absorbing primary ideal of R.

Proof. Since I_{λ} 's are ϕ - n-absorbing primary but are not n-absorbing primary, then for every $\lambda \in \Lambda, \sqrt{I_{\lambda}}=\sqrt{\phi\left(I_{\lambda}\right)}$, by Theorem 2.30. On the other hand $\phi\left(I_{\lambda}\right) \subseteq \phi(I)$ for every $\lambda \in \Lambda$, and so $\sqrt{\phi\left(I_{\lambda}\right)} \subseteq \sqrt{I}$. Hence $\sqrt{I}=\sqrt{I_{\lambda}}=$ $\sqrt{\phi\left(I_{\lambda}\right)}$ for every $\lambda \in \Lambda$. Let $a_{1} a_{2} \cdots a_{n+1} \in I \backslash \phi(I)$ for some $a_{1}, a_{2}, \ldots, a_{n+1} \in$
R, and let $a_{1} a_{2} \cdots a_{n} \notin I$. Therefore there is a $\lambda \in \Lambda$ such that $a_{1} a_{2} \cdots a_{n} \notin$ I_{λ}. Since I_{λ} is ϕ - n-absorbing primary and $a_{1} a_{2} \cdots a_{n+1} \in I_{\lambda} \backslash \phi\left(I_{\lambda}\right)$, then $a_{1} \cdots \widehat{a_{i}} \cdots a_{n+1} \in \sqrt{I_{\lambda}}=\sqrt{I}$ for some $1 \leq i \leq n$. Consequently I is a $\phi-n$ absorbing primary ideal of R.

Corollary 2.34. Let R be a ring, $\phi: \mathfrak{J}(R) \rightarrow \mathfrak{J}(R) \cup\{\emptyset\}$ be a function and I be an ideal of R. Suppose that $\sqrt{\phi(I)}=\phi(\sqrt{I})$ that is an n-absorbing ideal of R. If I is a ϕ - n-absorbing primary ideal of R, then \sqrt{I} is an n-absorbing ideal of R.

Proof. Assume that I is a ϕ - n-absorbing primary ideal of R. If I is an n absorbing primary ideal of R, then \sqrt{I} is an n-absorbing ideal, by Theorem 2.6. If I is not an n-absorbing primary ideal of R, then by Theorem 2.30 and by our hypothesis, $\sqrt{I}=\sqrt{\phi(I)}$ which is an n-absorbing ideal.

Theorem 2.35. Let I be a ϕ-n-absorbing primary ideal of a ring R that is not n-absorbing primary and let J be a ϕ-m-absorbing primary ideal of R that is not m-absorbing primary, and $n \geq m$. Suppose that the two ideals $\phi(I)$ and $\phi(J)$ are not coprime. Then
(1) $\sqrt{I+J}=\sqrt{\phi(I)+\phi(J)}$.
(2) If $\phi(I) \subseteq J$ and $\phi(J) \subseteq \phi(I+J)$, then $I+J$ is a ϕ-n-absorbing primary ideal of R.

Proof. (1) By Theorem 2.30, we have $\sqrt{I}=\sqrt{\phi(I)}$ and $\sqrt{J}=\sqrt{\phi(J)}$. Now, by $[24,2.25(\mathrm{i})]$ the result follows.
(2) Assume that $\phi(I) \subseteq J$ and $\phi(J) \subseteq \phi(I+J)$. Since $\phi(I)+\phi(J) \neq R$, then $I+J$ is a proper ideal of R, by part (1). Since $(I+J) / J \simeq I /(I \cap J)$ and I is ϕ - n-absorbing primary, we get that $(I+J) / J$ is a weakly n-absorbing primary ideal of R / J, by Theorem $2.21(3)$. On the other hand J is also $\phi-n$ absorbing primary, by Remark 2.1(6). Now, the assertion follows from Theorem 2.21(4).

Let R be a ring and M an R-module. A submodule N of M is called a pure submodule if the sequence $0 \rightarrow N \otimes_{R} E \rightarrow M \otimes_{R} E$ is exact for every R-module E.

As another consequence of Theorem 2.30 we have the following corollary.
Corollary 2.36. Let R be a ring.
(1) If I is a pure ϕ-n-absorbing primary ideal of R that is not n-absorbing primary, then $I=\phi(I)$.
(2) If R is von Neumann regular ring, then every $\phi-n$-absorbing primary ideal of R that is not n-absorbing primary is of the form $\phi(I)$ for some ideal I of R.

Proof. Note that every pure ideal is idempotent (see [12]), also every ideal of a von Neumann regular ring is idempotent.

Theorem 2.37. Let $n \geq 2$ be a positive integer, R be a ring and $\phi: \mathfrak{J}(R) \rightarrow$ $\mathfrak{J}(R) \cup\{\emptyset\}$ be a function. Let I be a $\phi-(n-1)$-absorbing primary ideal of R that is not $(n-1)$-absorbing primary, and J be an ideal of R such that $J \subseteq I$ with $\phi(I) \subseteq \phi(J)$. Then J is a ϕ-n-absorbing primary ideal of R.

Proof. Since I is a $\phi-(n-1)$-absorbing primary ideal that is not $(n-1)$ absorbing primary we have $\sqrt{I}=\sqrt{\phi(I)}$, by Theorem 2.30. Hence $\sqrt{J}=$ $\sqrt{I}=\sqrt{\phi(I)}$. Let $a_{1} a_{2} \cdots a_{n+1} \in J \backslash \phi(J)$ for some $a_{1}, a_{2}, \ldots, a_{n+1} \in R$ such that $a_{1} a_{2} \cdots a_{n} \notin J$. Since $J \subseteq I$, we have $a_{1} a_{2} \cdots a_{n+1} \in I \backslash \phi(I)$. Consider two cases.
Case 1. Assume that $a_{1} a_{2} \cdots a_{n} \notin I$. Since I is $\phi-(n-1)$-absorbing primary, then it is ϕ - n-absorbing primary, by Remark 2.1(6). Hence $a_{1} \cdots \widehat{a_{i}} \cdots a_{n+1} \in$ $\sqrt{I}=\sqrt{J}$ for some $1 \leq i \leq n$.
Case 2. Assume that $a_{1} a_{2} \cdots a_{n} \in I$. Since $a_{1} a_{2} \cdots a_{n+1} \in I \backslash \phi(I)$, we have that $a_{1} a_{2} \cdots a_{n} \in I \backslash \phi(I)$. On the other hand I is a ϕ - $(n-1)$-absorbing primary ideal, so either $a_{1} a_{2} \cdots a_{n-1} \in I \subseteq \sqrt{J}$ or $a_{1} \cdots \widehat{a_{i}} \cdots a_{n} \in \sqrt{I}=\sqrt{J}$ for some $1 \leq i \leq n-1$. Hence $a_{1} \cdots \widehat{a_{i}} \cdots a_{n+1} \in \sqrt{J}$ for some $1 \leq i \leq n$. Consequently J is a $\phi-n$-absorbing primary ideal of R.

3. ϕ - \boldsymbol{n}-absorbing primary ideals in direct products of commutative rings

Theorem 3.1. Let R_{1} and R_{2} be rings, and let I be a weakly n-absorbing primary ideal of R_{1}. Then $J=I \times R_{2}$ is a ϕ-n-absorbing primary ideal of $R=R_{1} \times R_{2}$ for each ϕ with $\phi_{\omega} \leq \phi \leq \phi_{1}$.

Proof. Suppose that I is a weakly n-absorbing primary ideal of R_{1}. If I is n absorbing primary, then J is n-absorbing primary and hence is ϕ - n-absorbing primary, for all ϕ. Assume that I is not n-absorbing primary. Then $I^{n+1}=\{0\}$, Corollary 2.31(1). Hence $J^{n+1}=\{0\} \times R_{2}$ and hence $\phi_{\omega}(J)=\{0\} \times R_{2}$. Therefore, $J \backslash \phi_{\omega}(J)=(I \backslash\{0\}) \times R_{2}$. Let $\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right) \cdots\left(x_{n+1}, y_{n+1}\right) \in$ $J \backslash \phi_{\omega}(J)$ for some $x_{1}, x_{2}, \ldots, x_{n+1} \in R_{1}$ and $y_{1}, y_{2}, \ldots, y_{n+1} \in R_{2}$. Then clearly $x_{1} x_{2} \cdots x_{n+1} \in I \backslash\{0\}$. Since I is weakly n-absorbing primary, either $x_{1} \cdots x_{n} \in I$ or $x_{1} \cdots \widehat{x_{i}} \cdots x_{n+1} \in \sqrt{I}$ for some $1 \leq i \leq n$. Therefore, either $\left(x_{1}, y_{1}\right) \cdots\left(x_{n}, y_{n}\right) \in J=I \times R_{2}$ or $\left(x_{1}, y_{1}\right) \cdots \widehat{\left(x_{i}, y_{i}\right)} \cdots\left(x_{n+1}, y_{n+1}\right) \in \sqrt{J}=$ $\sqrt{I} \times R_{2}$ for some $1 \leq i \leq n$. Consequently J is a ω - n-absorbing primary and hence ϕ - n-absorbing primary.

Theorem 3.2. Let R be a ring and J be a finitely generated proper ideal of R. Suppose that J is ϕ-n-absorbing primary, where $\phi \leq \phi_{n+2}$. Then, either J is weakly n-absorbing primary or $J^{n+1} \neq 0$ is idempotent and R decomposes as $R_{1} \times R_{2}$ where $R_{2}=J^{n+1}$ and $J=I \times R_{2}$, where I is weakly n-absorbing primary.
Proof. If J is n-absorbing primary, then J is weakly n-absorbing primary. So we can assume that J is not n-absorbing primary. Then by Corollary 2.31(2),
$J^{n+1}=J^{n+2}$ and hence $J^{n+1}=J^{2(n+1)}$. Thus J^{n+1} is idempotent, since J^{n+1} is finitely generated, $J^{n+1}=\langle e\rangle$ for some idempotent element $e \in R$. Suppose $J^{n+1}=0$. So $\phi(J)=0$, and hence J is weakly n-absorbing primary. Assume that $J^{n+1} \neq 0$. Put $R_{2}=J^{n+1}=R e$ and $R_{1}=R(1-e)$; hence $R=R_{1} \times R_{2}$. Let $I=J(1-e)$, so $J=I \times R_{2}$, where $I^{n+1}=0$. We show that I is weakly n-absorbing primary. Let $x_{1}, x_{2}, \ldots, x_{n+1} \in R$ and $x_{1} x_{2} \cdots x_{n+1} \in I \backslash\{0\}$ such that $x_{1} x_{2} \cdots x_{n} \notin I$. So $\left(x_{1}, 0\right)\left(x_{2}, 0\right) \cdots\left(x_{n+1}, 0\right)=$ $\left(x_{1} x_{2} \cdots x_{n+1}, 0\right) \in I \times R_{2}=J$. Since $J^{n+1}=\{0\} \times R_{2}$ and $\phi(J) \subseteq J^{n+1}$, then $\left(x_{1}, 0\right)\left(x_{2}, 0\right) \cdots\left(x_{n+1}, 0\right)=\left(x_{1} x_{2} \cdots x_{n+1}, 0\right) \in J \backslash \phi(J)$. Since J is $\phi-n$ absorbing primary, so either $\left(x_{1}, 0\right)\left(x_{2}, 0\right) \cdots\left(x_{n}, 0\right)=\left(x_{1} x_{2} \cdots x_{n}, 0\right) \in I \times$ $R_{2}=J$ or $\left(x_{1}, 0\right) \cdots \widehat{\left(x_{i}, 0\right)} \cdots\left(x_{n+1}, 0\right)=\left(x_{1} \cdots \widehat{x_{i}} \cdots x_{n+1}, 0\right) \in \sqrt{I} \times R_{2}=$ \sqrt{J} for some $1 \leq i \leq n$. The first case implies that $x_{1} x_{2} \cdots x_{n} \in I$, which is a contradiction. The second case implies that $x_{1} \cdots \widehat{x_{i}} \cdots x_{n+1} \in \sqrt{I}$ for some $1 \leq i \leq n$. Consequently I is weakly n-absorbing primary.

Corollary 3.3. Let R be an indecomposable ring and J a finitely generated ϕ - n-absorbing primary ideal of R, where $\phi \leq \phi_{n+2}$. Then J is weakly n absorbing primary. Furthermore, if R is an integral domain, then J is actually n-absorbing primary.

Corollary 3.4. Let R be a Noetherian integral domain. A proper ideal J of R is n-absorbing primary if and only if it is $(n+2)$-almost n-absorbing primary.

Theorem 3.5. Let $R=R_{1} \times \cdots \times R_{s}$ be a decomposable ring and $\psi_{i}: \Im\left(R_{i}\right) \rightarrow$ $\mathfrak{I}\left(R_{i}\right) \cup\{\emptyset\}$ be a function for $i=1,2, \ldots, s$. Set $\phi=\psi_{1} \times \psi_{2} \times \cdots \times \psi_{n}$. Suppose that

$$
L=I_{1} \times \cdots \times I_{\alpha_{1}-1} \times R_{\alpha_{1}} \times I_{\alpha_{1}+1} \times \cdots \times I_{\alpha_{j}-1} \times R_{\alpha_{j}} \times I_{\alpha_{j}+1} \times \cdots \times I_{s}
$$

be an ideal of R in which $\left\{\alpha_{1}, \ldots, \alpha_{j}\right\} \subset\{1, \ldots, s\}$. Moreover, suppose that $\psi_{\alpha_{i}}\left(R_{\alpha_{i}}\right) \neq R_{\alpha_{i}}$ for some $\alpha_{i} \in\left\{\alpha_{1}, \ldots, \alpha_{j}\right\}$. The following conditions are equivalent:
(1) L is a ϕ-n-absorbing primary ideal of R;
(2) L is an n-absorbing primary ideal of R;
(3) $L^{\prime}:=I_{1} \times \cdots \times I_{\alpha_{1}-1} \times I_{\alpha_{1}+1} \times \cdots \times I_{\alpha_{j}-1} \times I_{\alpha_{j}+1} \times \cdots \times I_{s}$ is an n-absorbing primary ideal of

$$
R^{\prime}:=R_{1} \times \cdots \times R_{\alpha_{1}-1} \times R_{\alpha_{1}+1} \times \cdots \times R_{\alpha_{j}-1} \times R_{\alpha_{j}+1} \times \cdots \times R_{s}
$$

Proof. (1) $\Rightarrow(2)$ Since $\psi_{\alpha_{i}}\left(R_{\alpha_{i}}\right) \neq R_{\alpha_{i}}$ for some $\alpha_{i} \in\left\{\alpha_{1}, \ldots, \alpha_{j}\right\}$, then clearly $L \nsubseteq \sqrt{\phi(L)}$. So by Theorem $2.30(2), L$ is an n-absorbing primary ideal of R.
$(2) \Rightarrow(3)$ Assume that L is an n-absorbing primary ideal of R and

$$
\begin{aligned}
& \left(a_{1}^{(1)}, \ldots, a_{\alpha_{1}-1}^{(1)}, a_{\alpha_{1}+1}^{(1)}, \ldots, a_{\alpha_{j}-1}^{(1)}, a_{\alpha_{j}+1}^{(1)}, \ldots, a_{s}^{(1)}\right) \\
& \cdots\left(a_{1}^{(n+1)}, \ldots, a_{\alpha_{1}-1}^{(n+1)}, a_{\alpha_{1}+1}^{(n+1)}, \ldots, a_{\alpha_{j}-1}^{(n+1)}, a_{\alpha_{j}+1}^{(n+1)}, \ldots, a_{s}^{(n+1)}\right) \in L^{\prime}
\end{aligned}
$$

in which $a_{i}^{(t)}$ s are in R_{i}, respectively. Then

$$
\begin{aligned}
& \left(a_{1}^{(1)}, \ldots, a_{\alpha_{1}-1}^{(1)}, 1, a_{\alpha_{1}+1}^{(1)}, \ldots, a_{\alpha_{j}-1}^{(1)}, 1, a_{\alpha_{j}+1}^{(1)}, \ldots, a_{s}^{(1)}\right) \\
& \cdots\left(a_{1}^{(n+1)}, \ldots, a_{\alpha_{1}-1}^{(n+1)}, 1, a_{\alpha_{1}+1}^{(n+1)}, \ldots, a_{\alpha_{j}-1}^{(n+1)}, 1, a_{\alpha_{j}+1}^{(n+1)}, \ldots, a_{s}^{(n+1)}\right) \in L .
\end{aligned}
$$

So, either

$$
\begin{aligned}
& \left(a_{1}^{(1)}, \ldots, a_{\alpha_{1}-1}^{(1)}, 1, a_{\alpha_{1}+1}^{(1)}, \ldots, a_{\alpha_{j}-1}^{(1)}, 1, a_{\alpha_{j}+1}^{(1)}, \ldots, a_{s}^{(1)}\right) \\
& \cdots\left(a_{1}^{(n)}, \ldots, a_{\alpha_{1}-1}^{(n)}, 1, a_{\alpha_{1}+1}^{(n)}, \ldots, a_{\alpha_{j}-1}^{(n)}, 1, a_{\alpha_{j}+1}^{(n)}, \ldots, a_{s}^{(n)}\right) \in L
\end{aligned}
$$

or there exists $1 \leq i \leq n$ such that

$$
\begin{aligned}
& \left(a_{1}^{(1)}, \ldots, a_{\alpha_{1}-1}^{(1)}, 1, a_{\alpha_{1}+1}^{(1)}, \ldots, a_{\alpha_{j}-1}^{(1)}, 1, a_{\alpha_{j}+1}^{(1)}, \ldots, a_{s}^{(1)}\right) \\
& \cdots\left(a_{1}^{(i-1)}, \ldots, a_{\alpha_{1}-1}^{(i-1)}, 1, a_{\alpha_{1}+1}^{(i-1)}, \ldots, a_{\alpha_{j}-1}^{(i-1)}, 1, a_{\alpha_{j}+1}^{(i-1)}, \ldots, a_{s}^{(i-1)}\right) \\
& \left(a_{1}^{(i+1)}, \ldots, a_{\alpha_{1}-1}^{(i+1)}, 1, a_{\alpha_{1}+1}^{(i+1)}, \ldots, a_{\alpha_{j}-1}^{(i+1)}, 1, a_{\alpha_{j}+1}^{(i+1)}, \ldots, a_{s}^{(i+1)}\right) \\
& \cdots\left(a_{1}^{(n+1)}, \ldots, a_{\alpha_{1}-1}^{(n+1)}, 1, a_{\alpha_{1}+1}^{(n+1)}, \ldots, a_{\alpha_{j}-1}^{(n+1)}, 1, a_{\alpha_{j}+1}^{(n+1)}, \ldots, a_{s}^{(n+1)}\right) \in \sqrt{L},
\end{aligned}
$$

because L is an n-absorbing primary ideal of R. Hence, either

$$
\begin{aligned}
& \left(a_{1}^{(1)}, \ldots, a_{\alpha_{1}-1}^{(1)}, a_{\alpha_{1}+1}^{(1)}, \ldots, a_{\alpha_{j}-1}^{(1)}, a_{\alpha_{j}+1}^{(1)}, \ldots, a_{s}^{(1)}\right) \\
& \cdots\left(a_{1}^{(n)}, \ldots, a_{\alpha_{1}-1}^{(n)}, a_{\alpha_{1}+1}^{(n)}, \ldots, a_{\alpha_{j}-1}^{(n)}, a_{\alpha_{j}+1}^{(n)}, \ldots, a_{s}^{(n)}\right) \in L^{\prime}
\end{aligned}
$$

or there exists $1 \leq i \leq n$ such that

$$
\begin{aligned}
& \left(a_{1}^{(1)}, \ldots, a_{\alpha_{1}-1}^{(1)}, a_{\alpha_{1}+1}^{(1)}, \ldots, a_{\alpha_{j}-1}^{(1)}, a_{\alpha_{j}+1}^{(1)}, \ldots, a_{s}^{(1)}\right) \\
& \cdots\left(a_{1}^{(i-1)}, \ldots, a_{\alpha_{1}-1}^{(i-1)}, a_{\alpha_{1}+1}^{(i-1}, \ldots, a_{\alpha_{j}-1}^{(i-1}, a_{\alpha_{j}+1}^{(i-1)}, \ldots, a_{s}^{(i-1)}\right) \\
& \left(a_{1}^{(i+1)}, \ldots, a_{\alpha_{1}-1}^{(i+1)}, a_{\alpha_{1}+1}^{(i+1)}, \ldots, a_{\alpha_{j}-1}^{(i+1)}, a_{\alpha_{j}+1}^{(i+1)}, \ldots, a_{s}^{(i+1)}\right) \\
& \cdots\left(a_{1}^{(n+1)}, \ldots, a_{\alpha_{1}-1}^{(n+1)}, a_{\alpha_{1}+1}^{(n+1)}, \ldots, a_{\alpha_{j}-1}^{(n+1)}, a_{\alpha_{j}+1}^{(n+1)}, \ldots, a_{s}^{(n+1)}\right) \in \sqrt{L^{\prime}} .
\end{aligned}
$$

Consequently, L^{\prime} is an n-absorbing primary ideal of R^{\prime}.
$(3) \Rightarrow(1)$ Let L^{\prime} is an n-absorbing primary ideal of R^{\prime}. It is routine to see that L is an n-absorbing primary ideal of R. Consequently, L is a ϕ - n-absorbing primary ideal of R.
Theorem 3.6. Let $n \geq 2$ be a positive integer, $R=R_{1} \times \cdots \times R_{n}$ be a ring with identity and let $\psi_{i}: \mathfrak{I}\left(R_{i}\right) \rightarrow \mathfrak{I}\left(R_{i}\right) \cup\{\emptyset\}$ be a function for $i=1,2, \ldots, n$ such that $\psi_{n}\left(R_{n}\right) \neq R_{n}$. Set $\phi=\psi_{1} \times \psi_{2} \times \cdots \times \psi_{n}$. Suppose that $I_{1} \times I_{2} \times \cdots \times I_{n}$ is an ideal of R which $\psi_{1}\left(I_{1}\right) \neq I_{1}$, and for some $2 \leq j \leq n, \psi_{j}\left(I_{j}\right) \neq I_{j}$, and I_{i} is a proper ideal of R_{i} for each $1 \leq i \leq n-1$. The following conditions are equivalent:
(1) $I_{1} \times I_{2} \times \cdots \times I_{n}$ is a ϕ-n-absorbing primary ideal of R;
(2) $I_{n}=R_{n}$ and $I_{1} \times I_{2} \times \cdots \times I_{n-1}$ is an n-absorbing primary ideal of $R_{1} \times \cdots \times R_{n-1}$ or I_{i} is a primary ideal of R_{i} for every $1 \leq i \leq n$, respectively;
(3) $I_{1} \times I_{2} \times \cdots \times I_{n}$ is an n-absorbing primary ideal of R.

Proof. (1) \Rightarrow (2) Suppose that $I_{1} \times I_{2} \times \cdots \times I_{n}$ is a ϕ - n-absorbing primary ideal of R. First assume that $I_{n}=R_{n}$. Since $\psi_{n}\left(R_{n}\right) \neq R_{n}$, then $I_{1} \times I_{2} \times \cdots \times I_{n-1}$ is an n-absorbing primary ideal of $R_{1} \times \cdots \times R_{n-1}$ by Theorem 3.5. Now, suppose that $I_{n} \neq R_{n}$. Fix $2 \leq i \leq n$. We show that I_{i} is a primary ideal of R_{i}. Suppose that $a b \in I_{i}$ for some $a, b \in R_{i}$. Let $x \in I_{1} \backslash \psi_{1}\left(I_{1}\right)$. Then

$$
\begin{aligned}
& (x, 1, \ldots, 1)(1,0,1, \ldots, 1, \ldots, 1)(1,1,0,1, \ldots, 1, \ldots, 1) \cdots \\
& (1, \ldots, 1,0, \overbrace{1}^{i-t h}, \ldots, 1)(1, \ldots, \overbrace{1}^{i-t h}, 0,1, \ldots, 1) \cdots(1, \ldots, 1,0) \\
& (1, \ldots, 1, \overbrace{a}^{i-t h}, 1, \ldots, 1)(1, \ldots, 1, \overbrace{b}^{i-t h}, 1, \ldots, 1) \\
& \quad=(x, 0, \ldots, 0, \overbrace{a b}^{i-t h}, 0, \ldots, 0) \in I_{1} \times \cdots \times I_{n} \backslash \psi_{1}\left(I_{1}\right) \times \cdots \times \psi_{n}\left(I_{n}\right) .
\end{aligned}
$$

Since $I_{1} \times I_{2} \times \cdots \times I_{n}$ is ϕ - n-absorbing primary and I_{i} 's are proper, then either

$$
\begin{aligned}
& (x, 1, \ldots, 1)(1,0,1, \ldots, 1, \ldots, 1)(1,1,0,1, \ldots, 1, \ldots, 1) \cdots \\
& (1, \ldots, 1,0, \overbrace{1}^{i-t h}, \ldots, 1)(1, \ldots, \overbrace{1}^{i-t h}, 0,1, \ldots, 1) \cdots(1, \ldots, 1,0) \\
& (1, \ldots, 1, \overbrace{a}^{i-t h}, 1, \ldots, 1)=(x, 0, \ldots, 0, \overbrace{a}^{i-t h}, 0, \ldots, 0) \in I_{1} \times \cdots \times I_{n}, \\
& (x, 1, \ldots, 1)(1,0,1, \ldots, 1, \ldots, 1)(1,1,0,1, \ldots, 1, \ldots, 1) \cdots \\
& (1, \ldots, 1,0, \overbrace{\underbrace{i-t h}_{1}}^{i-t h}, \ldots, 1)(1, \ldots, \overbrace{1}^{i-t h}, 0,1, \ldots, 1) \cdots(1, \ldots, 1,0) \\
& (1, \ldots, 1, \overbrace{b}^{i-t h}, 1, \ldots, 1)=(x, 0, \ldots, 0, \overbrace{b}^{i-t h}, 0, \ldots, 0) \in \sqrt{I_{1} \times \cdots \times I_{n}},
\end{aligned}
$$

or
and thus either $a \in I_{i}$ or $b \in \sqrt{I_{i}}$. Consequently I_{i} is a primary ideal of R_{i}. Since for some $2 \leq j \leq n, \psi_{j}\left(I_{j}\right) \neq I_{j}$, similarly we can show that I_{1} is a primary ideal of R_{1}.
$(2) \Rightarrow(3)$ If $I_{n}=R_{n}$ and $I_{1} \times I_{2} \times \cdots \times I_{n-1}$ is an n-absorbing primary ideal of $R_{1} \times \cdots \times R_{n-1}$, then $I_{1} \times I_{2} \times \cdots \times I_{n}$ is an n-absorbing primary ideal of R, by Theorem 3.5. Now, assume that I_{n} is a primary ideal of R_{n} and for each $1 \leq i \leq n-1, I_{i}$ is a primary ideal of R_{i}. Suppose that

$$
\begin{aligned}
& \left(a_{1}^{(1)}, \ldots, a_{n}^{(1)}\right)\left(a_{1}^{(2)}, \ldots, a_{n}^{(2)}\right) \cdots\left(a_{1}^{(n+1)}, \ldots, a_{n}^{(n+1)}\right) \\
\in & I_{1} \times I_{2} \times \cdots \times I_{n} \backslash \psi_{1}\left(I_{1}\right) \times \cdots \times \psi_{n}\left(I_{n}\right),
\end{aligned}
$$

in which for every $1 \leq j \leq n+1, a_{i}^{(j)}$, s are in R_{i}, respectively. Suppose that

$$
\left(a_{1}^{(1)}, \ldots, a_{n}^{(1)}\right)\left(a_{1}^{(2)}, \ldots, a_{n}^{(2)}\right) \cdots\left(a_{1}^{(n)}, \ldots, a_{n}^{(n)}\right) \notin I_{1} \times I_{2} \times \cdots \times I_{n} .
$$

Without loss of generality we may assume that $a_{1}^{(1)} \cdots a_{n}^{(n)} \notin I_{1}$. Since I_{1} is primary, we deduce that $a_{1}^{(n+1)} \in \sqrt{I_{1}}$. On the other hand $\sqrt{I_{i}}$ is a prime ideal, for any $2 \leq i \leq n$, then at least one of the $a_{i}^{(j)}$, s is in $\sqrt{I_{i}}$, say $a_{i}^{(i)} \in \sqrt{I_{i}}$. Thus $\left(a_{1}^{(2)}, \ldots, a_{n}^{(2)}\right) \cdots\left(a_{1}^{(n+1)}, \ldots, a_{n}^{(n+1)}\right) \in \sqrt{I_{1} \times I_{2} \times \cdots \times I_{n}}$. Consequently $I_{1} \times I_{2} \times \cdots \times I_{n}$ is an n-absorbing primary ideal of R.
$(3) \Rightarrow(1)$ is obvious.
Theorem 3.7. Let $R=R_{1} \times \cdots \times R_{n}$ be a ring with identity and let ψ_{i} : $\mathfrak{I}\left(R_{i}\right) \rightarrow \Im\left(R_{i}\right) \cup\{\emptyset\}$ be a function for $i=1,2, \ldots, n$ such that $\psi_{n}\left(R_{n}\right) \neq R_{n}$. Set $\phi=\psi_{1} \times \psi_{2} \times \cdots \times \psi_{n}$, and suppose that for every $1 \leq i \leq n-1$, I_{i} is a proper ideal of R_{i} such that $\psi_{1}\left(I_{1}\right) \neq I_{1}$ and I_{n} is an ideal of R_{n}. The following conditions are equivalent:
(1) $I_{1} \times \cdots \times I_{n}$ is a ϕ-n-absorbing primary ideal of R that is not an n absorbing primary ideal of R.
(2) I_{1} is a ψ_{1}-primary ideal of R_{1} that is not a primary ideal and for every $2 \leq i \leq n, I_{i}=\psi_{i}\left(I_{i}\right)$ is a primary ideal of R_{i}, respectively.

Proof. (1) \Rightarrow (2) Assume that $I_{1} \times \cdots \times I_{n}$ is a ϕ - n-absorbing primary ideal of R that is not an n-absorbing primary ideal. If for some $2 \leq i \leq n$ we have $\psi_{i}\left(I_{i}\right) \neq I_{i}$, then $I_{1} \times \cdots \times I_{n}$ is an n-absorbing primary ideal of R by Theorem 3.6, which contradicts our assumption. Thus for every $2 \leq i \leq n, \psi_{i}\left(I_{i}\right)=I_{i}$ and so $I_{n} \neq R_{n}$. A proof similar to part $(1) \Rightarrow(2)$ of Theorem 3.6 shows that for every $2 \leq i \leq n, \psi_{i}\left(I_{i}\right)=I_{i}$ is a primary ideal of R_{i}. Now, we show that I_{1} is a ψ_{1}-primary ideal of R_{1}. Consider $a, b \in R_{1}$ such that $a b \in I_{1} \backslash \psi_{1}\left(I_{1}\right)$. Note that

$$
\begin{aligned}
& (1,0,1, \ldots, 1)(1,1,0,1, \ldots, 1) \cdots(1, \ldots, 1,0)(a, 1, \ldots, 1)(b, 1, \ldots, 1) \\
= & (a b, 0, \ldots, 0) \in\left(I_{1} \times I_{2} \times \cdots \times I_{n}\right) \backslash\left(\psi_{1}\left(I_{1}\right) \times \cdots \times \psi_{n}\left(I_{n}\right)\right) .
\end{aligned}
$$

Because I_{i} 's are proper, the product of $(a, 1, \ldots, 1)(b, 1, \ldots, 1)$ with $n-2$ of $(1,0,1, \ldots, 1),(1,1,0,1, \ldots, 1), \ldots,(1, \ldots, 1,0)$ is not in $\sqrt{I_{1} \times I_{2} \times \cdots \times I_{n}}$. Since $I_{1} \times I_{2} \times \cdots \times I_{n}$ is a ϕ - n-absorbing primary ideal of R, we have either

$$
\begin{aligned}
& (1,0,1, \ldots, 1)(1,1,0,1, \ldots, 1) \cdots(1, \ldots, 1,0)(a, 1, \ldots, 1) \\
= & (a, 0, \ldots, 0) \in I_{1} \times I_{2} \times \cdots \times I_{n}
\end{aligned}
$$

or

$$
\begin{aligned}
& (1,0,1, \ldots, 1)(1,1,0,1, \ldots, 1) \cdots(1, \ldots, 1,0)(b, 1, \ldots, 1) \\
= & (b, 0, \ldots, 0) \in \sqrt{I_{1} \times I_{2} \times \cdots \times I_{n}}
\end{aligned}
$$

So either $a \in I_{1}$ or $b \in \sqrt{I_{1}}$. Thus I_{1} is a ψ_{1}-primary ideal of R_{1}. Assume I_{1} is a primary ideal of R_{1}, since for every $2 \leq i \leq n, I_{i}$ is a primary ideal of R_{i}, it is easy to see that $I_{1} \times \cdots \times I_{n}$ is an n-absorbing primary ideal of R, which is a contradiction.
$(2) \Rightarrow(1)$ It is clear that $I_{1} \times \cdots \times I_{n}$ is a $\phi-n$-absorbing primary ideal of R. Since I_{1} is not a primary ideal of R_{1}, there exist elements $a, b \in R_{1}$ such that $a b \in \psi_{1}\left(I_{1}\right)$, but $a \notin I_{1}$ and $b \notin \sqrt{I_{1}}$. Hence

$$
\begin{aligned}
& (1,0,1, \ldots, 1)(1,1,0,1, \ldots, 1) \cdots(1, \ldots, 1,0)(a, 1, \ldots, 1)(b, 1, \ldots, 1) \\
= & (a b, 0, \ldots, 0) \in \psi_{1}\left(I_{1}\right) \times \cdots \times \psi_{n}\left(I_{n}\right)
\end{aligned}
$$

but neither

$$
\begin{aligned}
& (1,0,1, \ldots, 1)(1,1,0,1, \ldots, 1) \cdots(1, \ldots, 1,0)(a, 1, \ldots, 1) \\
= & (a, 0, \ldots, 0) \in I_{1} \times \cdots \times I_{n}
\end{aligned}
$$

nor

$$
\begin{aligned}
& (1,0,1, \ldots, 1)(1,1,0,1, \ldots, 1) \cdots(1, \ldots, 1,0)(b, 1, \ldots, 1) \\
= & (b, 0, \ldots, 0) \in \sqrt{I_{1} \times \cdots \times I_{n}} .
\end{aligned}
$$

Also the product of $(a, 1, \ldots, 1)(b, 1, \ldots, 1)$ with $n-2$ of elements $(1,0,1, \ldots, 1)$, $(1,1,0,1, \ldots, 1), \ldots,(1, \ldots, 1,0)$ is not in $\sqrt{I_{1} \times \cdots \times I_{n}}$. Consequently $I_{1} \times$ $\cdots \times I_{n}$ is not an n-absorbing primary ideal of R.

Theorem 3.8. Let $R=R_{1} \times \cdots \times R_{n+1}$ where R_{i} 's are rings with identity and let for $i=1,2, \ldots, n+1, \psi_{i}: \Im\left(R_{i}\right) \rightarrow \Im\left(R_{i}\right) \cup\{\emptyset\}$ be a function such that $\psi_{i}\left(R_{i}\right) \neq R_{i}$. Set $\phi=\psi_{1} \times \psi_{2} \times \cdots \times \psi_{n+1}$.
(1) For every ideal I of $R, \phi(I)$ is not an n-absorbing primary ideal of R;
(2) If I is a ϕ-n-absorbing primary ideal of R, then either $I=\phi(I)$, or I is an n-absorbing primary ideal of R.

Proof. Let I be an ideal of R. We know that the ideal I is of the form $I_{1} \times$ $\cdots \times I_{n+1}$ where I_{i} 's are ideals of R_{i} 's, for $i=1, \ldots, n+1$.
(1) Suppose that $\phi(I)$ is an n-absorbing primary ideal of R. Since

$$
\begin{gathered}
(0,1, \ldots, 1)(1,0,1, \ldots, 1) \cdots(1, \ldots, 1,0)=(0, \ldots, 0) \\
\in \phi(I)=\psi_{1}\left(I_{1}\right) \times \cdots \times \psi_{n+1}\left(I_{n+1}\right)
\end{gathered}
$$

we have that either

$$
\begin{gathered}
(0,1, \ldots, 1)(1,0,1, \ldots, 1) \cdots(1, \ldots, 1,0,1)=(0, \ldots, 0,1) \\
\in \psi_{1}\left(I_{1}\right) \times \cdots \times \psi_{n+1}\left(I_{n+1}\right)
\end{gathered}
$$

or the product of $(1, \ldots, 1,0)$ with $n-1$ of $(0,1, \ldots, 1),(1,0,1, \ldots, 1), \ldots$, $(1, \ldots, 1,0,1)$ is in $\sqrt{\phi(I)}$. Hence, for some $1 \leq i \leq n+1,1 \in \psi_{i}\left(I_{i}\right)$ which implies that $\psi_{i}\left(R_{i}\right)=R_{i}$, a contradiction. Consequently $\phi(I)$ is not an n absorbing primary ideal of R.
(2) Let $I \neq \phi(I)$. So we have $I=I_{1} \times \cdots \times I_{n+1} \neq \psi_{1}\left(I_{1}\right) \times \psi_{2}\left(I_{2}\right) \times \cdots \times$ $\psi_{n+1}\left(I_{n+1}\right)$. Hence, there is an element $\left(a_{1}, \ldots, a_{n+1}\right) \in I \backslash\left(\psi_{1}\left(I_{1}\right) \times \psi_{2}\left(I_{2}\right) \times\right.$ $\left.\cdots \times \psi_{n+1}\left(I_{n+1}\right)\right)$. Then $\left(a_{1}, 1, \ldots, 1\right)\left(1, a_{2}, 1, \ldots, 1\right) \cdots\left(1, \ldots, 1, a_{n+1}\right) \in I \backslash \phi(I)$. Since I is a ϕ - n-absorbing primary ideal of R, then either

$$
\left(a_{1}, 1, \ldots, 1\right)\left(1, a_{2}, 1, \ldots, 1\right) \cdots\left(1, \ldots, 1, a_{n}, 1\right)=\left(a_{1}, a_{2}, \ldots, a_{n}, 1\right) \in I
$$

or, for some $1 \leq i \leq n$ we have

$$
\begin{array}{r}
\left(a_{1}, 1, \ldots, 1\right) \cdots\left(1, \ldots, 1, a_{i-1}, 1, \ldots, 1\right)\left(1, \ldots, 1, a_{i+1}, 1, \ldots, 1\right) \cdots \\
\left(1, \ldots, 1, a_{n+1}\right)=\left(a_{1}, \ldots, a_{i-1}, 1, a_{i+1}, \ldots, a_{n+1}\right) \in \sqrt{I} .
\end{array}
$$

Then $I_{i}=R_{i}$, for some $1 \leq i \leq n+1$ and so $I=I_{1} \times \cdots I_{i-1} \times R_{i} \times I_{i+1} \times \cdots I_{n+1}$. If $I \subseteq \sqrt{\phi(I)}$, then $\psi_{i}\left(R_{i}\right)=R_{i}$ which is a contradiction. Therefore, by Theorem 2.30, I must be an n-absorbing primary ideal of R.

Theorem 3.9. Let $R=R_{1} \times \cdots \times R_{n+1}$ where R_{i} 's are rings with identity and let for $i=1,2, \ldots, n+1, \psi_{i}: \Im\left(R_{i}\right) \rightarrow \Im\left(R_{i}\right) \cup\{\emptyset\}$ be a function such that $\psi_{i}\left(R_{i}\right) \neq R_{i}$. Set $\phi=\psi_{1} \times \psi_{2} \times \cdots \times \psi_{n+1}$. Let $L=I_{1} \times \cdots \times I_{n+1}$ be a proper ideal of R with $L \neq \phi(L)$. The following conditions are equivalent:
(1) $L=I_{1} \times \cdots \times I_{n+1}$ is a ϕ-n-absorbing primary ideal of R;
(2) $L=I_{1} \times \cdots \times I_{n+1}$ is an n-absorbing primary ideal of R;
(3) $L=I_{1} \times \cdots \times I_{i-1} \times R_{i} \times I_{i+1} \times \cdots \times I_{n+1}$ for some $1 \leq i \leq n+1$ such that for each $1 \leq t \leq n+1$ different from i, I_{t} is a primary ideal of R_{t} or $L=I_{1} \times \cdots \times I_{\alpha_{1}-1} \times R_{\alpha_{1}} \times I_{\alpha_{1}+1} \times \cdots \times I_{\alpha_{j}-1} \times R_{\alpha_{j}} \times I_{\alpha_{j}+1} \cdots \times I_{n+1}$ in which $\left\{\alpha_{1}, \ldots, \alpha_{j}\right\} \subset\{1, \ldots, n+1\}$ and

$$
I_{1} \times \cdots \times I_{\alpha_{1}-1} \times I_{\alpha_{1}+1} \times \cdots \times I_{\alpha_{j}-1} \times I_{\alpha_{j}+1} \cdots \times I_{n+1}
$$

is an n-absorbing primary ideal of

$$
R_{1} \times \cdots \times R_{\alpha_{1}-1} \times R_{\alpha_{1}+1} \times \cdots \times R_{\alpha_{j}-1} \times R_{\alpha_{j}+1} \times \cdots \times R_{n+1}
$$

Proof. (1) $\Rightarrow(2)$ Since L is a ϕ - n-absorbing primary ideal of R and $L \neq \phi(L)$, then L is an n-absorbing primary ideal of R, by Theorem 3.8.
$(2) \Rightarrow(3)$ Suppose that L is an n-absorbing primary ideal of R, then for some $1 \leq i \leq n+1, I_{i}=R_{i}$ by the proof of Theorem 3.8. Assume that $L=I_{1} \times \cdots \times I_{i-1} \times R_{i} \times I_{i+1} \times \cdots \times I_{n+1}$ for $1 \leq i \leq n+1$ such that for each $1 \leq t \leq n+1$ different from i, I_{t} is a proper ideal of R_{t}. Fix an I_{t} different from I_{i}. We may assume that $t>i$. Let $a b \in I_{t}$ for some $a, b \in R_{t}$. In this case

$$
\begin{aligned}
& (0,1, \ldots, 1)(1,0,1, \ldots, 1) \cdots(1, \ldots, 1,0, \overbrace{1}^{i-t h}, \ldots, 1)(1, \ldots, \overbrace{1}^{t-t h}, 0,1, \ldots, 1) \cdots \\
& (1, \ldots, 1,0 \overbrace{1}^{t-t h}, \ldots, 1)(1, \ldots, \overbrace{1}^{t-t h}, 0,1, \ldots, 1) \cdots(1, \ldots, 1,0)(1, \ldots, 1, \overbrace{a}^{t-t h}, 1, \ldots, 1) \\
& (1, \ldots, 1, \overbrace{b}^{t-t h}, 1, \ldots, 1)=(0, \ldots, 0, \overbrace{1}^{i-t h}, 0, \ldots, 0, \overbrace{a b}^{t-t h}, 0, \ldots, 0) \in L
\end{aligned}
$$

Since $I_{1} \times \cdots \times I_{n+1}$ is n-absorbing primary and I_{j} 's different from I_{i} are proper,

$$
\begin{aligned}
& \text { then either } \\
& (0,1, \ldots, 1)(1,0,1, \ldots, 1) \cdots(1, \ldots, 1,0, \overbrace{1}^{i-t h}, \ldots, 1)(1, \ldots, \overbrace{1}^{t-t h}, 0,1, \ldots, 1) \cdots \\
& (1, \ldots, 1,0, \overbrace{1}^{t-t h}, \ldots, 1)(1, \ldots, \overbrace{1}^{t-t h}, 0,1, \ldots, 1) \cdots(1, \ldots, 1,0)(1, \ldots, 1, \overbrace{a}^{t-t h}, 1, \ldots, 1) \\
& \text { or }
\end{aligned}
$$

$$
\begin{gathered}
(0,1, \ldots, 1)(1,0,1, \ldots, 1) \cdots(1, \ldots, 1,0, \overbrace{1}^{i-t h}, \ldots, 1)(1, \ldots, \overbrace{1}^{t-t h}, 0,1, \ldots, \overbrace{\overbrace{1}^{t-t h}}^{i-t h}) \cdots \\
(1, \ldots, 1,0, \overbrace{1}^{t-t h}, \ldots, 1)(1, \ldots, \overbrace{1}^{t-t h}, 0,1, \ldots, 1) \cdots(1, \ldots, 1,0)(1, \ldots, 1, \overbrace{b}^{i-t h}, 1, \ldots, 1) \\
=(0, \ldots, 0, \overbrace{1}^{t-t h}, 0, \ldots, 0, \overbrace{b}^{t h}, 0, \ldots, 0) \in \sqrt{L}
\end{gathered}
$$

and thus either $a \in I_{t}$ or $b \in \sqrt{I_{t}}$. Consequently I_{t} is a primary ideal of R_{t}. Now, assume that
$L=I_{1} \times \cdots \times I_{\alpha_{1}-1} \times R_{\alpha_{1}} \times I_{\alpha_{1}+1} \times \cdots \times I_{\alpha_{j}-1} \times R_{\alpha_{j}} \times I_{\alpha_{j}+1} \times \cdots \times I_{n+1}$
in which $\left\{\alpha_{1}, \ldots, \alpha_{j}\right\} \subset\{1, \ldots, n+1\}$. Since L is n-absorbing primary, then $I_{1} \times \cdots \times I_{\alpha_{1}-1} \times I_{\alpha_{1}+1} \times \cdots \times I_{\alpha_{j}-1} \times I_{\alpha_{j}+1} \cdots \times I_{n+1}$ is an n-absorbing primary ideal of

$$
R_{1} \times \cdots \times R_{\alpha_{1}-1} \times R_{\alpha_{1}+1} \times \cdots \times R_{\alpha_{j}-1} \times R_{\alpha_{j}+1} \times \cdots \times R_{n+1}
$$

by Theorem 3.5.
$(3) \Rightarrow(1)$ If L is in the first form, then similar to the proof of part $(2) \Rightarrow(3)$ of Theorem 3.6 we can verify that L is an n-absorbing primary ideal of R, and hence L is a ϕ - n-absorbing primary ideal of R. For the second form apply Theorem 3.5.

Theorem 3.10. Let $R=R_{1} \times \cdots \times R_{n+1}$ where R_{i} 's are rings with identity and let for $i=1,2, \ldots, n+1, \psi_{i}: \Im\left(R_{i}\right) \rightarrow \Im\left(R_{i}\right) \cup\{\emptyset\}$ be a function. Set $\phi=\psi_{1} \times \psi_{2} \times \cdots \times \psi_{n+1}$. Then, every proper ideal of R is a ϕ - n-absorbing primary ideal ($\phi-n$-absorbing ideal) of R if and only if $I=\psi_{i}(I)$ for every $1 \leq i \leq n+1$ and every proper ideal I of R_{i}.

Proof. Assume that every proper ideal of R is a $\phi-n$-absorbing primary ideal (ϕ - n-absorbing ideal) of R. Fix an i and let I be a proper ideal of R_{i}. Assume that $I \neq \psi_{i}(I)$, so give an element $x \in I \backslash \psi_{i}(I)$. Set

$$
J:=I \times\{0\} \cdots \times\{0\} .
$$

Notice that

$$
(1,0,1, \ldots, 1)(1,1,0,1, \ldots, 1) \cdots(1, \ldots, 1,0)(x, 1, \ldots, 1) \in J \backslash \phi(J) .
$$

Since I is ϕ - n-absorbing primary, then either

$$
(1,0,1, \ldots, 1)(1,1,0,1, \ldots, 1) \cdots(1, \ldots, 1,0) \in J
$$

or the product of $(x, 1, \ldots, 1)$ with $n-1$ of $(1,0,1, \ldots, 1),(1,1,0,1, \ldots, 1), \ldots$, $(1, \ldots, 1,0)$ is in \sqrt{J} which implies that either $1 \in I$ or $1 \in\{0\}$, a contradiction. Consequently $I=\psi_{i}(I)$. The converse is obvious.

Corollary 3.11. Let $n \geq 2$ be a natural number and $R=R_{1} \times \cdots \times R_{n+1}$ be a decomposable ring with identity. The following conditions are equivalent:
(1) R is a von Neumann regular ring;
(2) Every proper ideal of R is an n-almost n-absorbing primary ideal of R;
(3) Every proper ideal of R is an ω-n-absorbing primary ideal of R;
(4) Every proper ideal of R is an n-almost n-absorbing ideal of R.

Proof. (1) $\Leftrightarrow(2),(1) \Leftrightarrow(3)$ and $(1) \Leftrightarrow(4)$: Notice that, $\phi_{n}(I)=I\left(\right.$ or $\left.\phi_{\omega}(I)=I\right)$ if and only if $I=I^{2}$. By the fact that R is von Neumann regular if and only if $I=I^{2}$ for every ideal I of R and regarding Theorem 3.10 we have the implications.

Corollary 3.12. Let $R_{1}, R_{2}, \ldots, R_{n+1}$ be rings and let $R=R_{1} \times R_{2} \times \cdots \times$ R_{n+1}. Then the following conditions are equivalent:
(1) $R_{1}, R_{2}, \ldots, R_{n+1}$ are fields;
(2) Every proper ideal of R is a weakly n-absorbing ideal of R;
(3) Every proper ideal of R is a weakly n-absorbing primary ideal of R.

Proof. (1) \Rightarrow (2) By [11, Theorem 1.10].
$(2) \Rightarrow(3)$ is clear.
$(3) \Rightarrow(1)$ In Theorem 3.10 assume that $\phi=\phi_{0}$.

4. The stability of ϕ - n-absorbing primary ideals with respect to idealization

Let R be a commutative ring and M be an R-module. We recall from [14, Theorem 25.1] that every ideal of $R(+) M$ is in the form of $I(+) N$ in which I is an ideal of R and N is a submodule of M such that $I M \subseteq N$. Moreover, if $I_{1}(+) N_{1}$ and $I_{2}(+) N_{2}$ are ideals of $R(+) M$, then $\left(I_{1}(+) N_{1}\right) \cap\left(I_{2}(+) N_{2}\right)=$ $\left(I_{1} \cap I_{2}\right)(+)\left(N_{1} \cap N_{2}\right)$.

Theorem 4.1. Let R be a ring, I a proper ideal of R and M an R-module. Suppose that $\psi: \mathfrak{I}(R) \rightarrow \mathfrak{I}(R) \cup\{\emptyset\}$ and $\phi: \Im(R(+) M) \rightarrow \Im(R(+) M) \cup\{\emptyset\}$ are two functions such that $\phi(I(+) M)=\psi(I)(+) N$ for some submodule N of M with $\psi(I) M \subseteq N$. Then the following conditions are equivalent:
(1) $I(+) M$ is a ϕ-n-absorbing primary ideal of $R(+) M$;
(2) I is a ψ-n-absorbing primary ideal of R and if $\left(a_{1}, \ldots, a_{n+1}\right)$ is a ψ -$(n+1)$-tuple, then the second component of $\left(a_{1}, m_{1}\right) \cdots\left(a_{n+1}, m_{n+1}\right)$ is in N for any elements $m_{1}, \ldots, m_{n+1} \in M$.

Proof. (1) \Rightarrow (2) Assume that $I(+) M$ is a ϕ - n-absorbing primary ideal of $R(+) M$. Let $x_{1} \cdots x_{n+1} \in I \backslash \psi(I)$ for some $x_{1}, \ldots, x_{n+1} \in R$. Therefore

$$
\left(x_{1}, 0\right) \cdots\left(x_{n+1}, 0\right)=\left(x_{1} \cdots x_{n+1}, 0\right) \in I(+) M \backslash \phi(I(+) M)
$$

because $\phi(I(+) M)=\psi(I)(+) N$. Hence either $\left(x_{1}, 0\right) \cdots\left(x_{n}, 0\right)=\left(x_{1} \cdots x_{n}, 0\right)$ $\in I(+) M$ or $\left(x_{1}, 0\right) \cdots \widehat{\left(x_{i}, 0\right)} \cdots\left(x_{n+1}, 0\right)=\left(x_{1} \cdots \widehat{x_{i}} \cdots x_{n+1}, 0\right) \in \sqrt{I(+) M}=$ $\sqrt{I}(+) M$ for some $1 \leq i \leq n$. So either $x_{1} \cdots x_{n} \in I$ or $x_{1} \cdots \widehat{x_{i}} \cdots x_{n+1} \in \sqrt{I}$ for some $1 \leq i \leq n$ which shows that I is ψ - n-absorbing primary. For the second statement suppose that $a_{1} \cdots a_{n+1} \in \psi(I), a_{1} \cdots a_{n} \notin I$ and $a_{1} \cdots \widehat{a_{i}} \cdots a_{n+1} \notin$
\sqrt{I} for all $1 \leq i \leq n$. If the second component of $\left(a_{1}, m_{1}\right) \cdots\left(a_{n+1}, m_{n+1}\right)$ is not in N, then

$$
\left(a_{1}, m_{1}\right) \cdots\left(a_{n+1}, m_{n+1}\right) \in I(+) M \backslash \psi(I)(+) N .
$$

Thus either $\left(a_{1}, m_{1}\right) \cdots\left(a_{n}, m_{n}\right) \in I(+) M$ or

$$
\left(a_{1}, m_{1}\right) \cdots\left(\widehat{a_{i}, m_{i}}\right) \cdots\left(a_{n+1}, m_{n+1}\right) \in \sqrt{I}(+) M
$$

for some $1 \leq i \leq n$. So either $a_{1} \cdots a_{n} \in I$ or $a_{1} \cdots \widehat{a_{i}} \cdots a_{n+1} \in \sqrt{I}$ for some $1 \leq i \leq n$, which is a contradiction.
(2) \Rightarrow (1) Suppose that $\left(a_{1}, m_{1}\right) \cdots\left(a_{n+1}, m_{n+1}\right) \in I(+) M \backslash \psi(I)(+) N$ for some $a_{1}, \ldots, a_{n+1} \in R$ and some $m_{1}, \ldots, m_{n+1} \in M$. Clearly $a_{1} \cdots a_{n+1} \in I$. If $a_{1} \cdots a_{n+1} \in \psi(I)$, then the second component of $\left(a_{1}, m_{1}\right) \cdots\left(a_{n+1}, m_{n+1}\right)$ cannot be in N. Hence either $a_{1} \cdots a_{n} \in I$ or $a_{1} \cdots \widehat{a_{i}} \cdots a_{n+1} \in \sqrt{I}$ for some $1 \leq$ $i \leq n$. If $a_{1} \cdots a_{n+1} \notin \psi(I)$, then $I \psi$-n-absorbing primary implies that either $a_{1} \cdots a_{n} \in I$ or $a_{1} \cdots \widehat{a_{i}} \cdots a_{n+1} \in \sqrt{I}$ for some $1 \leq i \leq n$. Therefore we have either $\left(a_{1}, m_{1}\right) \cdots\left(a_{n}, m_{n}\right) \in I(+) M$ or $\left(a_{1}, m_{1}\right) \cdots\left(\widehat{a_{i}, m_{i}}\right) \cdots\left(a_{n+1}, m_{n+1}\right) \in$ $\sqrt{I(+) M}$ for some $1 \leq i \leq n$. Consequently $I(+) M$ is a ϕ - n-absorbing primary ideal of $R(+) M$.

Corollary 4.2. Let R be a ring, I be a proper ideal of R and M be an R module. The following conditions are equivalent:
(1) $I(+) M$ is an n-absorbing primary ideal of $R(+) M$;
(2) I is an n-absorbing primary ideal of R.

Proof. In Theorem 4.1 set $\phi=\phi_{\emptyset}, \psi=\phi_{\emptyset}$ and $N=M$.
Corollary 4.3. Let R be a ring, I be a proper ideal of R and M be an R module. The following conditions are equivalent:
(1) $I(+) M$ is a weakly n-absorbing primary ideal of $R(+) M$;
(2) I is a weakly n-absorbing primary ideal of R and if $\left(a_{1}, \ldots, a_{n+1}\right)$ is an $(n+1)$-tuple-zero, then the second component of

$$
\left(a_{1}, m_{1}\right) \cdots\left(a_{n+1}, m_{n+1}\right)
$$

is zero for any elements $m_{1}, \ldots, m_{n+1} \in M$.
Proof. In Theorem 4.1 set $\phi=\phi_{0}, \psi=\phi_{0}$ and $N=\{0\}$.
Corollary 4.4. Let R be a ring, I be a proper ideal of R and M be an R module. Then the following conditions are equivalent:
(1) $I(+) M$ is an n-almost n-absorbing primary ideal of $R(+) M$;
(2) I is an n-almost n-absorbing primary ideal of R and if $\left(a_{1}, \ldots, a_{n+1}\right)$ is a ϕ_{n} - $\left.n+1\right)$-tuple, then for any elements $m_{1}, \ldots, m_{n+1} \in M$ the second component of $\left(a_{1}, m_{1}\right) \cdots\left(a_{n+1}, m_{n+1}\right)$ is in $I^{n-1} M$.

Proof. Notice that $(I(+) M)^{n}=I^{n}(+) I^{n-1} M$. In Theorem 4.1 set $\phi=\phi_{n}$, $\psi=\phi_{n}$ and $N=I^{n-1} M$.

Corollary 4.5. Let R be a ring, I be a proper ideal of R and M be an R module such that $I M=M$. Then $I(+) M$ is an n-almost n-absorbing primary ideal of $R(+) M$ if and only if I is an n-almost n-absorbing primary ideal of R.
Corollary 4.6. Let R be a ring, I be a proper ideal of R and M be an R module. Then $I(+) M$ is an ω-n-absorbing primary ideal of $R(+) M$ if and only if I is an ω-n-absorbing primary ideal of R.

5. Strongly ϕ - n-absorbing primary ideals

Proposition 5.1. Let I be a proper ideal of a ring R. Then the following conditions are equivalent:
(1) I is strongly ϕ-n-absorbing primary;
(2) For every ideals I_{1}, \ldots, I_{n+1} of R such that $I \subseteq I_{1}, I_{1} \cdots I_{n+1} \subseteq I \backslash \phi(I)$ implies that either $I_{1} \cdots I_{n} \subseteq I$ or $I_{1} \cdots \widehat{I}_{i} \cdots I_{n+1} \subseteq \sqrt{I}$ for some $1 \leq i \leq n$.

Proof. (1) $\Rightarrow(2)$ is clear.
$(2) \Rightarrow(1)$ Let $J, I_{2}, \ldots, I_{n+1}$ be ideals of R such that $J I_{2} \cdots I_{n+1} \subseteq I$ and $J I_{2} \cdots I_{n+1} \nsubseteq \phi(I)$. Then we have that

$$
(J+I) I_{2} \cdots I_{n+1}=\left(J I_{2} \cdots I_{n+1}\right)+\left(I I_{2} \cdots I_{n+1}\right) \subseteq I
$$

On the other hand

$$
(J+I) I_{2} \cdots I_{n+1} \nsubseteq \phi(I)
$$

since $J I_{2} \cdots I_{n+1} \subseteq(J+I) I_{2} \cdots I_{n+1}$. Set $I_{1}:=J+I$. Then, by the hypothesis either $I_{1} \cdots I_{n} \subseteq I$ or $I_{2} \cdots I_{n+1} \subseteq \sqrt{I}$ or there exists $2 \leq i \leq n$ such that $(J+I) I_{2} \cdots \widehat{I}_{i} \cdots I_{n+1} \subseteq \sqrt{I}$. Therefore, either $J I_{2} \cdots I_{n} \subseteq I$ or $I_{2} \cdots I_{n+1} \subseteq$ \sqrt{I} or there exists $2 \leq i \leq n$ such that $J I_{2} \cdots \widehat{I}_{i} \cdots I_{n+1} \subseteq \sqrt{I}$. So I is strongly ϕ - n-absorbing primary.

Remark 5.2. Let R be a ring. Notice that $\operatorname{Jac}(R)$ is a radical ideal of R. $\operatorname{So} \operatorname{Jac}(R)$ is a strongly n-absorbing ideal of R if and only if I is a strongly n-absorbing primary ideal of R.

Given any set X, one can define a topology on X where every subset of X is an open set. This topology is referred to as the discrete topology on X, and X is a discrete topological space if it is equipped with its discrete topology.

We denote by $\operatorname{Max}(R)$ the set of all maximal ideals of R.
Theorem 5.3. Let R be a ring and $\operatorname{Max}(R)$ be a discrete topological space. Then $\operatorname{Max}(R)$ is an infinite set if and only if $\operatorname{Jac}(R)$ is not strongly n-absorbing for every natural number n.

Proof. (\Leftarrow) We can verify this implication without any assumption on $\operatorname{Max}(R)$, by [3, Theorem 2.1].
(\Rightarrow) Notice that $\operatorname{Max}(R)$ is a discrete topological space if and only if the Jacobson radical of R is the irredundant intersection of the maximal ideals
of R, [21, Corollary 3.3]. Let $\operatorname{Max}(R)$ be an infinite set. Assume that for some natural number $n, \operatorname{Jac}(R)$ is a strongly n-absorbing ideal. Choose n distinct elements $M_{1}, M_{2}, \ldots, M_{n}$ of $\operatorname{Max}(R)$. Set $\mathcal{M}:=\left\{M_{1}, M_{2}, \ldots, M_{n}\right\}$, and denote by \mathcal{M}^{c} the complement of \mathcal{M} in $\operatorname{Max}(R)$. Since $\operatorname{Jac}(R)=M_{1} \cap M_{2} \cap$ $\cdots \cap M_{n} \cap\left(\bigcap_{M \in \mathcal{M}^{c}} M\right)$, then either $M_{1} \cdots M_{i-1} M_{i+1} \cdots M_{n}\left(\bigcap_{M \in \mathcal{M}^{c}} M\right) \subseteq$ $\operatorname{Jac}(R)$ for some $1 \leq i \leq n$, or $M_{1} M_{2} \cdots M_{n} \subseteq \operatorname{Jac}(R)$. In the first case we have $M_{1} \cdots M_{i-1} M_{i+1} \cdots M_{n}\left(\bigcap_{M \in \mathcal{M}^{c}} M\right) \subseteq M_{i}$ and so $\bigcap_{M \in \mathcal{M}^{c}} M \subseteq M_{i}$, a contradiction. If $M_{1} M_{2} \cdots M_{n} \subseteq \operatorname{Jac}(R)$, then $M_{1} M_{2} \cdots M_{n} \subseteq M$ for every $M \in \mathcal{M}^{c}$, and so again we reach a contradiction. Consequently $\operatorname{Jac}(R)$ is not strongly n-absorbing.

In the next theorem we investigate ϕ - n-absorbing primary ideals over u-rings. Notice that any Bézout ring is a u-ring, [22, Corollary 1.2].

Theorem 5.4. Let R be a u-ring and let $\phi: \mathfrak{J}(R) \rightarrow \mathfrak{J}(R) \cup\{\emptyset\}$ be a function. Then the following conditions are equivalent:
(1) I is strongly ϕ - n-absorbing primary;
(2) I is ϕ - n-absorbing primary;
(3) For every elements $x_{1}, \ldots, x_{n} \in R$ with $x_{1} \cdots x_{n} \notin \sqrt{I}$ either

$$
\left(I:_{R} x_{1} \cdots x_{n}\right)=\left(I:_{R} x_{1} \cdots x_{n-1}\right)
$$

or $\left(I:_{R} x_{1} \cdots x_{n}\right) \subseteq\left(\sqrt{I}:_{R} x_{1} \cdots \widehat{x_{i}} \cdots x_{n}\right)$ for some $1 \leq i \leq n-1$ or $\left(I:_{R} x_{1} \cdots x_{n}\right)=\left(\phi(I):_{R} x_{1} \cdots x_{n}\right) ;$
(4) For every t ideals $I_{1}, \ldots, I_{t}, 1 \leq t \leq n-1$, and for every elements $x_{1}, \ldots, x_{n-t} \in R$ with $x_{1} \cdots x_{n-t} I_{1} \cdots I_{t} \nsubseteq \sqrt{I}$,

$$
\left(I:_{R} x_{1} \cdots x_{n-t} I_{1} \cdots I_{t}\right)=\left(I:_{R} x_{1} \cdots x_{n-t-1} I_{1} \cdots I_{t}\right)
$$

or

$$
\left(I:_{R} x_{1} \cdots x_{n-t} I_{1} \cdots I_{t}\right) \subseteq\left(\sqrt{I}:_{R} x_{1} \cdots \widehat{x_{i}} \cdots x_{n-t} I_{1} \cdots I_{t}\right)
$$

for some $1 \leq i \leq n-t-1$ or

$$
\left(I:_{R} x_{1} \cdots x_{n-t} I_{1} \cdots I_{t}\right) \subseteq\left(\sqrt{I}:_{R} x_{1} \cdots x_{n-t} I_{1} \cdots \widehat{I}_{j} \cdots I_{t}\right)
$$

for some $1 \leq j \leq t$ or

$$
\left(I:_{R} x_{1} \cdots x_{n-t} I_{1} \cdots I_{t}\right)=\left(\phi(I):_{R} x_{1} \cdots x_{n-t} I_{1} \cdots I_{t}\right) .
$$

(5) For every ideals $I_{1}, I_{2}, \ldots, I_{n}$ of R with $I_{1} I_{2} \cdots I_{n} \nsubseteq I$, either there is $1 \leq i \leq n$ such that $\left(I:_{R} I_{1} \cdots I_{n}\right) \subseteq\left(\sqrt{I}:_{R} I_{1} \cdots \widehat{I}_{i} \cdots I_{n}\right)$ or $\left(I:_{R} I_{1} \cdots I_{n}\right)=\left(\phi(I):_{R} I_{1} \cdots I_{n}\right)$.

Proof. (1) \Rightarrow (2) It is clear.
$(2) \Rightarrow(3)$ Suppose that $x_{1}, \ldots, x_{n} \in R$ such that $x_{1} \cdots x_{n} \notin \sqrt{I}$. By Theorem 2.3,

$$
\begin{aligned}
\left(I:_{R} x_{1} \cdots x_{n}\right) \subseteq & {\left[\cup_{i=1}^{n-1}\left(\sqrt{I}:_{R} x_{1} \cdots \widehat{x_{i}} \cdots x_{n}\right)\right] } \\
& \cup\left(I:_{R} x_{1} \cdots x_{n-1}\right) \cup\left(\phi(I):_{R} x_{1} \cdots x_{n}\right) .
\end{aligned}
$$

Since R is a u-ring we have either $\left(I:_{R} x_{1} \cdots x_{n}\right) \subseteq\left(\sqrt{I}:_{R} x_{1} \cdots \widehat{x_{i}} \cdots x_{n}\right)$ for some $1 \leq i \leq n-1$ or $\left(I:_{R} x_{1} \cdots x_{n}\right)=\left(I:_{R} x_{1} \cdots x_{n-1}\right)$ or $\left(I:_{R} x_{1} \cdots x_{n}\right)=$ $\left(\phi(I):_{R} x_{1} \cdots x_{n}\right)$.
$(3) \Rightarrow(4)$ We use induction on t. For $t=1$, consider elements $x_{1}, \ldots, x_{n-1} \in$ R and ideal I_{1} of R such that $x_{1} \cdots x_{n-1} I_{1} \nsubseteq \sqrt{I}$. Let $a \in\left(I:_{R} x_{1} \cdots x_{n-1} I_{1}\right)$. Then $I_{1} \subseteq\left(I:_{R} a x_{1} \cdots x_{n-1}\right)$. If $a x_{1} \cdots x_{n-1} \in \sqrt{I}$, then $a \in\left(\sqrt{I}:_{R}\right.$ $\left.x_{1} \cdots x_{n-1}\right)$. If $a x_{1} \cdots x_{n-1} \notin \sqrt{I}$, then by part (3), either $I_{1} \subseteq\left(I:_{R} a x_{1} \cdots\right.$ $\left.x_{n-2}\right)$ or $I_{1} \subseteq\left(\sqrt{I}:_{R} a x_{1} \cdots \widehat{x_{i}} \cdots x_{n-1}\right)$ for some $1 \leq i \leq n-2$ or $I_{1} \subseteq\left(\sqrt{I}:_{R}\right.$ $\left.x_{1} \cdots x_{n-1}\right)$ or $I_{1} \subseteq\left(\phi(I):_{R} a x_{1} \cdots x_{n-1}\right)$. The first case implies that $a \in\left(I:_{R}\right.$ $\left.x_{1} \cdots x_{n-2} I_{1}\right)$. The second case implies that $a \in\left(\sqrt{I}:_{R} x_{1} \cdots \widehat{x_{i}} \cdots x_{n-1} I_{1}\right)$ for some $1 \leq i \leq n-2$. The third case cannot be happen, because $x_{1} \cdots x_{n-1} I_{1} \nsubseteq$ \sqrt{I}, and the last case implies that $a \in\left(\phi(I):_{R} x_{1} \cdots x_{n-1} I_{1}\right)$. Hence

$$
\begin{aligned}
\left(I:_{R} x_{1} \cdots x_{n-1} I_{1}\right) \subseteq & \cup_{i=1}^{n-2}\left(\sqrt{I}:_{R} x_{1} \cdots \widehat{x_{i}} \cdots x_{n-1} I_{1}\right) \cup\left(\sqrt{I}:_{R} x_{1} \cdots x_{n-1}\right) \\
& \cup\left(I:_{R} x_{1} \cdots x_{n-2} I_{1}\right) \cup\left(\phi(I):_{R} x_{1} \cdots x_{n-1} I_{1}\right) .
\end{aligned}
$$

Since R is a u-ring, then either $\left(I:_{R} x_{1} \cdots x_{n-1} I_{1}\right) \subseteq\left(\sqrt{I}:_{R} x_{1} \cdots \widehat{x_{i}} \cdots x_{n-1} I_{1}\right)$ for some $1 \leq i \leq n-2$, or $\left(I:_{R} x_{1} \cdots x_{n-1} I_{1}\right) \subseteq\left(\sqrt{I}:_{R} x_{1} \cdots x_{n-1}\right)$ or $\left(I:_{R} x_{1} \cdots x_{n-1} I_{1}\right)=\left(I:_{R} x_{1} \cdots x_{n-2} I_{1}\right)$ or $\left(I:_{R} x_{1} \cdots x_{n-1} I_{1}\right)=\left(\phi(I):_{R}\right.$ $x_{1} \cdots x_{n-1} I_{1}$). Now suppose $t>1$ and assume that for integer $t-1$ the claim holds. Let x_{1}, \ldots, x_{n-t} be elements of R and let I_{1}, \ldots, I_{t} be ideals of R such that $x_{1} \cdots x_{n-t} I_{1} \cdots I_{t} \nsubseteq \sqrt{I}$. Consider element $a \in\left(I:_{R} x_{1} \cdots x_{n-t} I_{1} \cdots I_{t}\right)$. Thus $I_{t} \subseteq\left(I:_{R} a x_{1} \cdots x_{n-t} I_{1} \cdots I_{t-1}\right)$. If $a x_{1} \cdots x_{n-t} I_{1} \cdots I_{t-1} \subseteq \sqrt{I}$, then $a \in\left(\sqrt{I}:_{R} x_{1} \cdots x_{n-t} I_{1} \cdots I_{t-1}\right)$. If $a x_{1} \cdots x_{n-t} I_{1} \cdots I_{t-1} \nsubseteq \sqrt{I}$, then by induction hypothesis, either

$$
\left(I:_{R} a x_{1} \cdots x_{n-t} I_{1} \cdots I_{t-1}\right) \subseteq\left(\sqrt{I}:_{R} x_{1} \cdots x_{n-t} I_{1} \cdots I_{t-1}\right)
$$

or

$$
\left(I:_{R} a x_{1} \cdots x_{n-t} I_{1} \cdots I_{t-1}\right) \subseteq\left(\sqrt{I}:_{R} a x_{1} \cdots \widehat{x_{i}} \cdots x_{n-t} I_{1} \cdots I_{t-1}\right)
$$

for some $1 \leq i \leq n-t-1$ or

$$
\left(I:_{R} a x_{1} \cdots x_{n-t} I_{1} \cdots I_{t-1}\right) \subseteq\left(\sqrt{I}:_{R} a x_{1} \cdots x_{n-t} I_{1} \cdots \widehat{I}_{j} \cdots I_{t-1}\right)
$$

for some $1 \leq j \leq t-1$ or

$$
\left(I:_{R} a x_{1} \cdots x_{n-t} I_{1} \cdots I_{t-1}\right)=\left(I:_{R} a x_{1} \cdots x_{n-t-1} I_{1} \cdots I_{t-1}\right),
$$

or $\left(I:_{R} a x_{1} \cdots x_{n-t} I_{1} \cdots I_{t-1}\right)=\left(\phi(I):_{R} a x_{1} \cdots x_{n-t} I_{1} \cdots I_{t-1}\right)$. Since $x_{1} \cdots$ $x_{n-t} I_{1} \cdots I_{t} \nsubseteq \sqrt{I}$, then the first case cannot happen. Consequently, either

$$
a \in\left(\sqrt{I}:_{R} x_{1} \cdots \widehat{x_{i}} \cdots x_{n-t} I_{1} \cdots I_{t}\right)
$$

for some $1 \leq i \leq n-t-1$ or $a \in\left(\sqrt{I}:_{R} x_{1} \cdots x_{n-t} I_{1} \cdots \widehat{I}_{j} \cdots I_{t}\right)$ for some $1 \leq$ $j \leq t-1$ or $a \in\left(I:_{R} x_{1} \cdots x_{n-t-1} I_{1} \cdots I_{t}\right)$, or $a \in\left(\phi(I):_{R} x_{1} \cdots x_{n-t} I_{1} \cdots I_{t}\right)$. Hence

$$
\left(I:_{R} x_{1} \cdots x_{n-t} I_{1} \cdots I_{t}\right) \subseteq\left[\cup_{i=1}^{n-t-1}\left(\sqrt{I}:_{R} x_{1} \cdots \widehat{x_{i}} \cdots x_{n-t} I_{1} \cdots I_{t}\right)\right]
$$

$$
\begin{aligned}
& \cup\left[\cup_{j=1}^{t}\left(\sqrt{I}:_{R} x_{1} \cdots x_{n-t} I_{1} \cdots \widehat{I}_{j} \cdots I_{t}\right)\right] \\
& \cup\left(I:_{R} x_{1} \cdots x_{n-t-1} I_{1} \cdots I_{t}\right) \\
& \cup\left(\phi(I):_{R} x_{1} \cdots x_{n-t} I_{1} \cdots I_{t}\right) .
\end{aligned}
$$

Now, since R is u-ring we are done.
$(4) \Rightarrow(5)$ Let $I_{1}, I_{2}, \ldots, I_{n}$ be ideals of R such that $I_{1} I_{2} \cdots I_{n} \nsubseteq I$. Suppose that $a \in\left(I:_{R} I_{1} I_{2} \cdots I_{n}\right)$. Then $I_{n} \subseteq\left(I:_{R} a I_{1} I_{2} \cdots I_{n-1}\right)$. If $a I_{1} I_{2} \cdots I_{n-1} \subseteq$ \sqrt{I}, then $a \in\left(\sqrt{I}:_{R} I_{1} I_{2} \cdots I_{n-1}\right)$. If $a I_{1} I_{2} \cdots I_{n-1} \nsubseteq \sqrt{I}$, then by part (4) we have either $I_{n} \subseteq\left(I:_{R} I_{1} I_{2} \cdots I_{n-1}\right)$ or $I_{n} \subseteq\left(\sqrt{I}:_{R} a I_{1} \cdots \widehat{I}_{i} \cdots I_{n-1}\right)$ for some $1 \leq i \leq n-1$ or $I_{n} \subseteq\left(\phi(I):_{R} a I_{1} I_{2} \cdots I_{n-1}\right)$. By hypothesis, the first case is not hold. The second case implies that $a \in\left(\sqrt{I}:_{R} I_{1} \cdots \widehat{I_{i}} \cdots I_{n}\right)$ for some $1 \leq$ $i \leq n-1$. The third case implies that $a \in\left(\phi(I):_{R} I_{1} I_{2} \cdots I_{n}\right)$. Similarly, since R is u-ring, there is $1 \leq i \leq n$ such that $\left(I:_{R} I_{1} \cdots I_{n}\right) \subseteq\left(\sqrt{I}:_{R} I_{1} \cdots \widehat{I_{i}} \cdots I_{n}\right)$ or $\left(I:_{R} I_{1} \cdots I_{n}\right)=\left(\phi(I):_{R} I_{1} \cdots I_{n}\right)$.
$(5) \Rightarrow(1)$ This implication has an easy verification.
Remark 5.5. Note that in Theorem 5.4, for the case $n=2$ and $\phi=\phi_{\emptyset}$ we can omit the condition u-ring, by the fact that if an ideal (a subgroup) is the union of two ideals (two subgroups), then it is equal to one of them. So we conclude that an ideal I of a ring R is 2-absorbing primary if and only if it is strongly 2 -absorbing primary.

Let R be a ring with identity. We recall that if $f=a_{0}+a_{1} X+\cdots+a_{t} X^{t}$ is a polynomial on the ring R, then content of f is defined as the R-ideal, generated by the coefficients of f, i.e. $c(f)=\left(a_{0}, a_{1}, \ldots, a_{t}\right)$. Let T be an R-algebra and c the function from T to the ideals of R defined by $c(f)=\cap\{I \mid I$ is an ideal of R and $f \in I T\}$ known as the content of f. Note that the content function c is nothing but the generalization of the content of a polynomial $f \in R[X]$. The R-algebra T is called a content R-algebra if the following conditions hold:
(1) For all $f \in T, f \in c(f) T$.
(2) (Faithful flatness) For any $r \in R$ and $f \in T$, the equation $c(r f)=r c(f)$ holds and $c\left(1_{T}\right)=R$.
(3) (Dedekind-Mertens content formula) For each $f, g \in T$, there exists a natural number n such that $c(f)^{n} c(g)=c(f)^{n-1} c(f g)$.
For more information on content algebras and their examples we refer to [19], [20] and [23]. In [18] Nasehpour gave the definition of a Gaussian R-algebra as follows: Let T be an R-algebra such that $f \in c(f) T$ for all $f \in T$. T is said to be a Gaussian R-algebra if $c(f g)=c(f) c(g)$, for all $f, g \in T$.

Example 5.6 ([18]). Let T be a content R-algebra such that R is a Prüfer domain. Since every nonzero finitely generated ideal of R is a cancellation ideal of R, the Dedekind-Mertens content formula causes T to be a Gaussian R-algebra.

In the following theorem we use the functions ϕ_{R} and ϕ_{T} that defined just prior to Theorem 2.25.

Theorem 5.7. Let R be a Prüfer domain, T a content R-algebra and I an ideal of R. Then I is a ϕ_{R}-n-absorbing primary ideal of R if and only if $I T$ is $a \phi_{T}$-n-absorbing primary ideal of T.

Proof. Assume that I is a ϕ_{R} - n-absorbing primary ideal of R. Let $f_{1} f_{2} \cdots f_{n+1}$ $\in I T \backslash \phi_{T}(I T)$ for some $f_{1}, f_{2}, \ldots, f_{n+1} \in T$ such that $f_{1} f_{2} \cdots f_{n} \notin I T$. Then $c\left(f_{1} f_{2} \cdots f_{n+1}\right) \subseteq I$. Since R is a Prüfer domain and T is a content R-algebra, then T is a Gaussian R-algebra. Therefore

$$
c\left(f_{1} f_{2} \cdots f_{n+1}\right)=c\left(f_{1}\right) c\left(f_{2}\right) \cdots c\left(f_{n+1}\right) \subseteq I
$$

If $c\left(f_{1} f_{2} \cdots f_{n+1}\right) \subseteq \phi_{R}(I)=\phi_{T}(I T) \cap R$, then

$$
f_{1} f_{2} \cdots f_{n+1} \in c\left(f_{1} f_{2} \cdots f_{n+1}\right) T \subseteq\left(\phi_{T}(I T) \cap R\right) T \subseteq \phi_{T}(I T)
$$

which is a contradiction. Hence $c\left(f_{1}\right) c\left(f_{2}\right) \cdots c\left(f_{n+1}\right) \subseteq I$ and

$$
c\left(f_{1}\right) c\left(f_{2}\right) \cdots c\left(f_{n+1}\right) \nsubseteq \phi_{R}(I) .
$$

Since R is a u-domain, I is a strongly $\phi_{R}-n$-absorbing primary ideal of R, by Theorem 5.4, and this implies either $c\left(f_{1}\right) c\left(f_{2}\right) \cdots c\left(f_{n}\right) \subseteq I$ or

$$
c\left(f_{1}\right) \cdots \widehat{c\left(f_{i}\right)} \cdots c\left(f_{n+1}\right) \subseteq \sqrt{I}
$$

for some $1 \leq i \leq n$. In the first case we have $f_{1} f_{2} \cdots f_{n} \in c\left(f_{1} f_{2} \cdots f_{n}\right) T \subseteq I T$, which contradicts our hypothesis. In the second case we have $f_{1} \cdots \widehat{f}_{i} \cdots f_{n+1} \in$ $(\sqrt{I}) T \subseteq \sqrt{I T}$ for some $1 \leq i \leq n$. Consequently $I T$ is a ϕ_{T} - n-absorbing primary ideal of T.

For the converse, note that since T is a content R-algebra, $I T \cap R=I$ for every ideal I of R. Now, apply Theorem 2.25.

The algebra of all polynomials over an arbitrary ring with an arbitrary number of indeterminate is an example of content algebras.

Corollary 5.8. Let R be a Prüfer domain and I be an ideal of R. Then I is a ϕ_{R} - n-absorbing primary ideal of R if and only if $I[X]$ is a $\phi_{R[X]-n-a b s o r b i n g ~}$ primary ideal of $R[X]$.

As two special cases of Corollary 5.8, when $\phi_{R}=\phi_{T}=\emptyset$ and $\phi_{R}=\phi_{T}=0$ we have the following result.

Corollary 5.9. Let R be a Prüfer domain and I be an ideal of R. Then I is an n-absorbing primary ideal of R if and only if $I[X]$ is an n-absorbing primary ideal of $R[X]$.

Acknowledgement. The authors would like to thank the referees for their valuable comments and suggestions which improved this paper.

References

[1] D. D. Anderson and M. Batanieh, Generalizations of prime ideals, Comm. Algebra 36 (2008), no. 2, 686-696.
[2] D. D. Anderson and E. Smith, Weakly prime ideals, Houston J. Math. 29 (2003), no. 4, 831-840.
[3] D. F. Anderson and A. Badawi, On n-absorbing ideals of commutative rings, Comm. Algebra 39 (2011), no. 5, 1646-1672.
[4] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc. 75 (2007), no. 3, 417-429.
[5] A. Badawi and E. Houston, Powerful ideals, strongly primary ideals, almost pseudovaluation domains, and conducive domains, Comm. Algebra 30 (2002), no. 4, 15911606.
[6] A. Badawi, Ü. Tekir, and E. Yetkin, On 2-absorbing primary ideals in commutative rings, Bull. Korean Math. Soc. 51 (2014), no. 4, 1163-1173.
[7] _, On weakly 2-absorbing primary ideals of commutative rings, J. Korean Math. Soc. 52 (2015), no. 1, 97-111.
[8] A. Badawi and A. Yousefian Darani, On weakly 2-absorbing ideals of commutative rings, Houston J. Math. 39 (2013), no. 2, 441-452.
[9] S. M. Bhatwadekar and P. K. Sharma, Unique factorization and birth of almost primes. Comm. Algebra 33 (2005), no. 1, 43-49.
[10] S. Ebrahimi Atani and F. Farzalipour, On weakly primary ideals, Georgian Math. J. 12 (2005), no. 3, 423-429.
[11] M. Ebrahimpour and R. Nekooei, On generalizations of prime ideals, Comm. Algebra 40 (2012), no. 4, 1268-1279.
[12] D. J. Fieldhouse, Purity and Flatness, McGill University, Montreal, Canada, 1967.
[13] R. Gilmer, Multiplicative ideal theory, Queens Papers Pure Appl. Math. 90, Queens University, Kingston, 1992.
[14] J. Hukaba, Commutative rings with zero divisors, Marcel Dekker, Inc., New York, 1988.
[15] H. Mostafanasab, F. Soheilnia, and A. Yousefian Darani, On weakly n-absorbing ideals of commutative rings, submitted.
[16] H. Mostafanasab, E. Yetkin, U. Tekir, and A. Yousefian Darani, On 2-absorbing primary submodules of modules over commutative rings, An. Şt. Univ. Ovidius Constanta, (in press).
[17] H. Mostafanasab and A. Yousefian Darani, 2-irreducible and strongly 2-irreducible ideals of commutative rings, Miskolc Math. Notes, (in press).
[18] P. Nasehpour, On the Anderson-Badawi $\omega_{R[X]}(I[X])=\omega_{R}(I)$ conjecture, arXiv:1401. 0459, (2014).
[19] D. G. Northcott, A generalization of a theorem on the content of polynomials, Proc. Cambridge Phil. Soc. 55 (1959), 282-288.
[20] J. Ohm and D. E. Rush, Content modules and algebras, Math. Scand. 31 (1972), 49-68.
[21] P. A. J. Peña and J. E. Vielma, Isolated points and redundancy, Comment. Math. Univ. Carolin. 52 (2011), no. 1, 145-152.
[22] P. Quartararo and H. S. Butts, Finite unions of ideals and modules, Proc. Amer. Math. Soc. 52 (1975), 91-96.
[23] D. E. Rush, Content algebras, Canad. Math. Bull. 21 (1978), no. 3, 329-334.
[24] R. Y. Sharp, Steps in Commutative Algebra, Second edition, Cambridge University Press, Cambridge, 2000.
[25] A. Yousefian Darani, Generalizations of primary ideals in commutative rings, Novi Sad J. Math. 42 (2012), no. 1, 27-35.

Hojuat Mostafanasab
Department of Mathematics and Applications
University of Mohaghegh Ardabili
P. O. Box 179, Ardabil, Iran

E-mail address: h.mostafanasab@uma.ac.ir and h.mostafanasab@gmail.com
Ahmad Yousefian Darani
Department of Mathematics and Applications
University of Mohaghegh Ardabili
P. O. Box 179, Ardabil, Iran

E-mail address: yousefian@uma.ac.ir and youseffian@gmail.com

[^0]: Received March 17, 2015; Revised June 15, 2015.
 2010 Mathematics Subject Classification. Primary 13A15; Secondary 13F05, 13G05.
 Key words and phrases. n-absorbing ideals, n-absorbing primary ideals, ϕ - n-absorbing primary ideals.

