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ON φ-n-ABSORBING PRIMARY IDEALS

OF COMMUTATIVE RINGS

Hojjat Mostafanasab and Ahmad Yousefian Darani

Abstract. All rings are commutative with 1 6= 0 and n is a positive
integer. Let φ : J(R) → J(R)∪ {∅} be a function where J(R) denotes the
set of all ideals of R. We say that a proper ideal I of R is φ-n-absorbing

primary if whenever a1, a2, . . . , an+1 ∈ R and a1a2 · · · an+1 ∈ I\φ(I),
either a1a2 · · · an ∈ I or the product of an+1 with (n− 1) of a1, . . . , an is

in
√
I. The aim of this paper is to investigate the concept of φ-n-absorbing

primary ideals.

1. Introduction

Throughout this paper R will be a commutative ring with a nonzero identity.
In [2], Anderson and Smith called a proper ideal I of a commutative ring R
to be weakly prime if whenever a, b ∈ R and 0 6= ab ∈ I, either a ∈ I or
b ∈ I. In [9], Bhatwadekar and Sharma defined a proper ideal I of an integral
domain R to be almost prime (resp. m-almost prime) if for a, b ∈ R with
ab ∈ I\I2, (resp. ab ∈ I\Im, m ≥ 3) either a ∈ I or b ∈ I. This definition
can obviously be made for any commutative ring R. Later, Anderson and
Batanieh [1] gave a generalization of prime ideals which covers all the above
mentioned definitions. Let φ : J(R) → J(R) ∪ {∅} be a function. A proper
ideal I of R is said to be φ-prime if for a, b ∈ R with ab ∈ I\φ(I), a ∈ I or
b ∈ I. Since I\φ(I) = I\(I ∩ φ(I)), without loss of generality we may assume
that φ(I) ⊆ I. We henceforth make this assumption. Weakly primary ideals
were first introduced and studied by Ebrahimi Atani and Farzalipour in [10].
A proper ideal I of R is called weakly primary if for a, b ∈ R with 0 6= ab ∈ I,
either a ∈ I or b ∈

√
I. In [25], Yousefian Darani called a proper ideal I of R

to be φ-primary if for a, b ∈ R with ab ∈ I\φ(I), then either a ∈ I or b ∈
√
I .

He defined the map φα : J(R) → J(R) ∪ {∅} as follows:

(1) φ∅ : φ(I) = ∅ defines primary ideals.
(2) φ0 : φ(I) = 0 defines weakly primary ideals.
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(3) φ2 : φ(I) = I2 defines almost primary ideals.
(4) φm(m ≥ 2) : φ(I) = Im defines m-almost primary ideals.
(5) φω : φ(I) = ∩∞

m=1I
m defines ω-primary ideals.

(6) φ1 : φ(I) = I defines any ideals.

Given two functions ψ1, ψ2 : J(R) → J(R) ∪ {∅}, we define ψ1 ≤ ψ2 if ψ1(J) ⊆
ψ2(J) for each J ∈ J(R). Note in this case that

φ∅ ≤ φ0 ≤ φω ≤ · · · ≤ φm+1 ≤ φm ≤ · · · ≤ φ2 ≤ φ1.

Badawi in [4] generalized the concept of prime ideals in a different way.
He defined a nonzero proper ideal I of R to be a 2-absorbing ideal of R if
whenever a, b, c ∈ R and abc ∈ I, then ab ∈ I or ac ∈ I or bc ∈ I. Anderson
and Badawi [3] generalized the concept of 2-absorbing ideals to n-absorbing
ideals. According to their definition, a proper ideal I of R is called an n-
absorbing (resp. strongly n-absorbing) ideal if whenever a1 · · · an+1 ∈ I for
a1, . . . , an+1 ∈ R (resp. I1 · · · In+1 ⊆ I for ideals I1, . . . , In+1 of R), then there
are n of the ai’s (resp. n of the Ii’s) whose product is in I. Thus a strongly
1-absorbing ideal is just a prime ideal. Clearly a strongly n-absorbing ideal of
R is also an n-absorbing ideal of R. Anderson and Badawi conjectured that
these two concepts are equivalent, e.g., they proved that an ideal I of a Prüfer
domain R is strongly n-absorbing if and only if I is an n-absorbing ideal of R,
[3, Corollary 6.9]. They also gave several results relating strongly n-absorbing
ideals. The concept of 2-absorbing ideals has another generalization, called
weakly 2-absorbing ideals, which has studied in [8]. A proper ideal I of R is
a weakly 2-absorbing ideal of R if whenever a, b, c ∈ R and 0 6= abc ∈ I, then
ab ∈ I or ac ∈ I or bc ∈ I. Generally, Mostafanasab et al. [15] called a proper
ideal I of R to be a weakly n-absorbing (resp. strongly weakly n-absorbing) ideal
if whenever 0 6= a1 · · · an+1 ∈ I for a1, . . . , an+1 ∈ R (resp. 0 6= I1 · · · In+1 ⊆ I
for ideals I1, . . . , In+1 of R), then there are n of the ai’s (resp. n of the Ii’s)
whose product is in I. Clearly a strongly weakly n-absorbing ideal of R is also
a weakly n-absorbing ideal of R. Let φ : J(R) → J(R) ∪ {∅} be a function.
We say that a proper ideal I of R is a φ-n-absorbing (resp. strongly φ-n-
absorbing) ideal of R if a1a2 · · ·an+1 ∈ I\φ(I) for a1, a2, . . . , an+1 ∈ R (resp.
I1 · · · In+1 ⊆ I and I1 · · · In+1 6⊆ φ(I) for ideals I1, . . . , In+1 of R) implies that
there are n of the ai’s (resp. n of the Ii’s) whose product is in I. Notice that
φ-n-absorbing ideals of a commutative ring R have already been investigated
by Ebrahimpour and Nekooei [11] as (n, n+ 1)-φ-prime ideals.

Recall from [6] that a proper ideal I of R is said to be a 2-absorbing primary

ideal of R if whenever a, b, c ∈ R with abc ∈ I, then ab ∈ I or ac ∈
√
I

or bc ∈
√
I. For more studies concerning 2-absorbing primary (submodules)

ideals we refer to [16], [17]. Also, recall from [7] that a proper ideal I of R is
said to be a weakly 2-absorbing primary ideal of R if whenever a, b, c ∈ R with
0 6= abc ∈ I implies ab ∈ I or ac ∈

√
I or bc ∈

√
I. We call a proper ideal I of

R to be a φ-n-absorbing primary (resp. strongly φ-n-absorbing primary) ideal

of R if a1a2 · · · an+1 ∈ I\φ(I) for some elements a1, a2, . . . , an+1 ∈ R (resp.
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I1 · · · In+1 ⊆ I and I1 · · · In+1 6⊆ φ(I) for ideals I1, . . . , In+1 of R) implies that
either a1a2 · · · an ∈ I or the product of an+1 with (n − 1) of a1, a2, . . . , an is

in
√
I (resp. either I1I2 · · · In ⊆ I or the product of In+1 with (n − 1) of

I1, I2, . . . , In is in
√
I). We can define the map φα : J(R) → J(R) ∪ {∅} as

follows: Let I be a φα-n-absorbing primary ideal of R. Then

(1) φ∅(I) = ∅ ⇒ I is an n-absorbing primary ideal.
(2) φ0(I) = 0 ⇒ I is a weakly n-absorbing primary ideal.
(3) φ2(I) = I2 ⇒ I is an almost n-absorbing primary ideal.
(4) φm(I) = Im (m ≥ 2) ⇒ I is an m-almost n-absorbing primary ideal.
(5) φω(I) = ∩∞

m=1I
m ⇒ I is an ω-n-absorbing primary ideal.

(6) φ1(I) = I ⇒ I is any ideal.

Some of our results use the R(+)M construction. Let R be a ring and M
be an R-module. Then R(+)M = R ×M is a ring with identity (1, 0) under
addition defined by (r,m) + (s, n) = (r + s,m+ n) and multiplication defined
by (r,m)(s, n) = (rs, rn + sm).

In [22], Quartararo et al. said that a commutative ring R is a u-ring provided
R has the property that an ideal contained in a finite union of ideals must be
contained in one of those ideals. They show that every Bézout ring is a u-ring.
Moreover, they proved that every Prüfer domain is a u-domain. Also, any ring
which contains an infinite field as a subring is a u-ring, [24, Exercise 3.63].

LetR be a ring and φ : J(R) → J(R)∪{∅} be a function. In Section 2, we give
some basic properties of φ-n-absorbing primary ideals. For instance, we prove
that if φ reverses the inclusion and for every 1 ≤ i ≤ k, Ii is a φ-ni-absorbing
primary ideal of R such that

√
Ii is a φ-ni-absorbing ideal of R, respectively,

then I1 ∩ I2 ∩ · · · ∩ Ik and I1I2 · · · Ik are two φ-n-absorbing primary ideals of
R where n = n1 + n2 + · · ·+ nk. It is shown that a Noetherian domain R is a
Dedekind domain if and only if a nonzero n-absorbing primary ideal of R is in
the form of I =M t1

1 M
t2
2 · · ·M ti

i for some 1 ≤ i ≤ n and some distinct maximal
ideals M1,M2, . . . ,Mi of R and some positive integers t1, t2, . . . , ti. Moreover,
we prove that if I is an ideal of a ring R such that

√
I = M1 ∩M2 ∩ · · · ∩Mn

where Mi’s are maximal ideals of R, then I is an n-absorbing primary ideal
of R. We show that if I is a φ-n-absorbing primary ideal of R that is not an
n-absorbing primary ideal, then In+1 ⊆ φ(I).

In Section 3, we investigate φ-n-absorbing primary ideals of direct products
of commutative rings. For example, it is shown that if R is an indecomposable
ring and J is a finitely generated φ-n-absorbing primary ideal of R, where
φ ≤ φn+2, then J is weakly n-absorbing primary. Let n ≥ 2 be a natural
number and R = R1 × · · · ×Rn+1 be a decomposable ring with identity. Then
we prove that R is a von Neumann regular ring if and only if every proper ideal
of R is an n-almost n-absorbing primary ideal of R if and only if every proper
ideal of R is an ω-n-absorbing primary ideal of R.

In Section 4, we study the stability of φ-n-absorbing primary ideals with
respect to idealization. As a result of this section, we establish that if I is a
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proper ideal of R andM is an R-module such that IM =M , then I(+)M is an
n-almost n-absorbing primary ideal of R(+)M if and only if I is an n-almost
n-absorbing primary ideal of R.

In Section 5, we prove that over a u-ring R the two concepts of strongly
φ-n-absorbing primary ideals and of φ-n-absorbing primary ideals are coincide.
Moreover, if R is a Prüfer domain and I is an ideal of R, then I is an n-
absorbing primary ideal of R if and only if I[X ] is an n-absorbing primary
ideal of R[X ].

2. Properties of φ-n-absorbing primary ideals

Let n be a positive integer. Consider elements a1, . . . , an and ideals I1, . . . , In
of a ring R. Throughout this paper we use the following notations:

• a1 · · · âi · · ·an: i-th term is excluded from a1 · · · an.
• I1 · · · Îi · · · In: i-th term is excluded from I1 · · · In.

It is obvious that any n-absorbing primary ideal of a ring R is a φ-n-
absorbing primary ideal of R. Also it is evident that the zero ideal is a weakly
n-absorbing primary ideal of R. Assume that p1, p2, . . . , pn+1 are distinct prime
numbers. We know that the zero ideal I = {0} is a weakly n-absorbing pri-
mary ideal of the ring Zp1p2···pn+1

. Notice that p1p2 · · · pn+1 = 0 ∈ I, but

neither p1p2 · · · pn ∈ I nor p1 · · · p̂i · · · pn+1 ∈
√
I = Nil(Zp1p2···pn+1

) for every
1 ≤ i ≤ n. Hence I is not an n-absorbing primary ideal of Zp1p2···pn+1

.

Remark 2.1. Let I be a proper ideal of a ring R and φ : J(R) → J(R)∪ {∅} be
a function.

(1) I is φ-primary if and only if I is φ-1-absorbing primary.
(2) If I is φ-n-absorbing primary, then it is φ-i-absorbing primary for all

i > n.
(3) If I is φ-primary, then it is φ-n-absorbing primary for all n > 1.
(4) If I is φ-n-absorbing primary for some n ≥ 1, then there exists the

least n0 ≥ 1 such that I is φ-n0-absorbing primary. In this case, I is φ-
n-absorbing primary for all n ≥ n0 and it is not φ-i-absorbing primary
for n0 > i > 0.

Remark 2.2. If I is a radical ideal of a ring R, then clearly I is a φ-n-absorbing
primary (resp. strongly φ-n-absorbing primary) ideal if and only if I is a φ-n-
absorbing (resp. strongly φ-n-absorbing) ideal.

Theorem 2.3. Let R be a ring and let φ : J(R) → J(R) ∪ {∅} be a function.

Then the following conditions are equivalent:

(1) I is φ-n-absorbing primary;

(2) For every elements x1, . . . , xn ∈ R with x1 · · ·xn /∈
√
I,

(I :R x1 · · ·xn) ⊆ [∪n−1
i=1 (

√
I :R x1 · · · x̂i · · ·xn)]

∪ (I :R x1 · · ·xn−1) ∪ (φ(I) :R x1 · · ·xn).
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Proof. (1)⇒(2) Suppose that x1, . . . , xn ∈ R such that x1 · · ·xn /∈
√
I. Let

a ∈ (I :R x1 · · ·xn). So ax1 · · ·xn ∈ I. If ax1 · · ·xn ∈ φ(I), then a ∈ (φ(I) :R
x1 · · ·xn). Assume that ax1 · · ·xn /∈ φ(I). Since x1 · · ·xn /∈

√
I, then either

ax1 · · ·xn−1 ∈ I, i.e., a ∈ (I :R x1 · · ·xn−1) or for some 1 ≤ i ≤ n− 1 we have

ax1 · · · x̂i · · ·xn ∈
√
I, i.e., a ∈ (

√
I :R x1 · · · x̂i · · ·xn). Consequently

(I :R x1 · · ·xn) ⊆ [∪n−1
i=1 (

√
I :R x1 · · · x̂i · · ·xn)]

∪ (I :R x1 · · ·xn−1) ∪ (φ(I) :R x1 · · ·xn).

(2)⇒(1) Let a1a2 · · ·an+1 ∈ I\φ(I) for some a1, a2, . . . , an+1 ∈ R such that

a1a2 · · · an /∈ I. Then a1 ∈ (I :R a2 · · · an+1). If a2 · · · an+1 ∈
√
I, then we are

done. Hence we may assume that a2 · · · an+1 /∈
√
I and so by part (2),

(I :R a2 · · ·an+1) ⊆ [∪n
i=2(

√
I :R a2 · · · âi · · · an+1)]

∪ (I :R a2 · · · an) ∪ (φ(I) :R a2 · · ·an+1).

Since a1a2 · · · an+1 /∈ φ(I) and a1a2 · · · an /∈ I, the only possibility is that

a1 ∈ ∪n
i=2(

√
I :R a2 · · · âi · · · an+1). Then a1a2 · · · âi · · · an+1 ∈

√
I for some

2 ≤ i ≤ n. Consequently I is φ-n-absorbing primary. �

Let R be an integral domain with quotient field K. Badawi and Houston [5]
defined a proper ideal I of R to be strongly primary if, whenever ab ∈ I with
a, b ∈ K, we have a ∈ I or b ∈

√
I. In [25], a proper ideal I of R is called

strongly φ-primary if whenever ab ∈ I\φ(I) with a, b ∈ K, we have either a ∈ I

or b ∈
√
I. We say that a proper ideal I of R is quotient φ-n-absorbing primary

if whenever x1x2 · · ·xn+1 ∈ I\φ(I) with x1, x2, . . . , xn+1 ∈ K, we have either

x1x2 · · ·xn ∈ I or x1 · · · x̂i · · ·xn+1 ∈
√
I for some 1 ≤ i ≤ n.

Proposition 2.4. Let V be a valuation domain with the quotient field K, and

let φ : J(V ) → J(V ) ∪ {∅} be a function. Then every φ-n-absorbing primary

ideal of V is quotient φ-n-absorbing primary.

Proof. Assume that I is a φ-n-absorbing primary ideal of V . Let x1x2 · · ·xn+1

∈ I for some x1, x2, . . . , xn+1 ∈ K such that x1x2 · · ·xn /∈ I. If xn+1 /∈ V ,
then x−1

n+1 ∈ V , since V is valuation. So x1 · · ·xnxn+1x
−1
n+1 = x1 · · ·xn ∈ I, a

contradiction. Hence xn+1 ∈ V . If xi ∈ V for every 1 ≤ i ≤ n, then there is

nothing to prove. If xi /∈ V for some 1 ≤ i ≤ n, then x1 · · · x̂i · · ·xn+1 ∈ I ⊆
√
I .

Consequently, I is quotient φ-n-absorbing primary. �

Proposition 2.5. Let R be a von Neumann regular ring and let φ : J(R) →
J(R)∪ {∅} be a function. Then I is a φ-n-absorbing primary ideal of R if and

only if e1e2 · · · en+1 ∈ I\φ(I) for some idempotent elements e1, e2, . . . , en+1 ∈

R implies that either e1e2 · · · en ∈ I or e1 · · · êi · · · en+1 ∈
√
I for some 1 ≤ i ≤

n.

Proof. Notice the fact that any finitely generated ideal of a von Neumann
regular ring R is generated by an idempotent element. �
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Theorem 2.6. Let R be a ring and let φ : J(R) → J(R) ∪ {∅} be a function.

If I is a φ-n-absorbing primary ideal of R such that
√
φ(I) = φ(

√
I), then

√
I

is a φ-n-absorbing ideal of R.

Proof. Let x1x2 · · ·xn+1 ∈
√
I\φ(

√
I) for some x1, x2, . . . , xn+1 ∈ R such that

x1 · · · x̂i · · ·xn+1 /∈
√
I for every 1 ≤ i ≤ n. Then there is a natural number m

such that xm1 x
m
2 · · ·xmn+1 ∈ I. If xm1 x

m
2 · · ·xmn+1 ∈ φ(I), then x1x2 · · ·xn+1 ∈√

φ(I) = φ(
√
I), which is a contradiction. Since I is φ-n-absorbing primary, our

hypothesis implies that xm1 x
m
2 · · ·xmn ∈ I. Hence x1x2 · · ·xn ∈

√
I. Therefore√

I is a φ-n-absorbing ideal of R. �

Corollary 2.7. Let I be an n-absorbing primary ideal of R. Then
√
I =

P1 ∩ P2 ∩ · · · ∩ Pi where 1 ≤ i ≤ n and Pi’s are the only distinct prime ideals

of R that are minimal over I.

Proof. In Theorem 2.6, suppose that φ = φ∅. Now apply [3, Theorem 2.5]. �

Theorem 2.8. Let R be a ring, and let φ : J(R) → J(R) ∪ {∅} be a function

that reverses the inclusion. Suppose that for every 1 ≤ i ≤ k, Ii is a φ-ni-

absorbing primary ideal of R such that
√
Ii = Pi is a φ-ni-absorbing ideal of

R, respectively. Set n := n1 + n2 + · · ·+ nk. The following conditions hold:

(1) I1 ∩ I2 ∩ · · · ∩ Ik is a φ-n-absorbing primary ideal of R.
(2) I1I2 · · · Ik is a φ-n-absorbing primary ideal of R.

Proof. (1) Set L = I1∩I2∩· · ·∩Ik. Then
√
L = P1∩P2∩· · ·∩Pk. Suppose that

a1a2 · · · an+1 ∈ L\φ(L) for some a1, a2, . . . , an+1 ∈ R and a1 · · · âi · · ·an+1 /∈√
L for every 1 ≤ i ≤ n. By,

√
L = P1 ∩ P2 ∩ · · · ∩ Pk is φ-n-absorbing, then

a1a2 · · · an ∈ P1 ∩ P2 ∩ · · · ∩ Pk. We claim that a1a2 · · · an ∈ L. For every
1 ≤ i ≤ k, Pi is φ-ni-absorbing and a1a2 · · ·an ∈ Pi\φ(Pi), then there exist
elements 1 ≤ βi

1, β
i
2, . . . , β

i
ni

≤ n such that aβi
1

aβi
2

· · · aβi
ni

∈ Pi. If β
l
r = βm

s for

two pairs l, r and m, s, then

aβ1

1

aβ1

2

· · · aβ1
n1

· · ·aβl
1

aβl
2

· · · aβl
r
· · · aβl

nl

· · ·

aβm
1
aβm

2
· · · âβm

s
· · · aβm

nm
· · · aβk

1

aβk
2

· · ·aβk
nk

∈
√
L.

Therefore a1 · · · âβm
s
· · · anan+1 ∈

√
L, a contradiction. So βi

j ’s are distinct.
Hence

{aβ1

1

, aβ1

2

, . . . , aβ1
n1

, aβ2

1

, aβ2

2

, . . . , aβ2
n2

, . . . , aβk
1

, aβk
2

, . . . , aβk
nk

}={a1, a2, . . . , an}.

If aβi
1

aβi
2

· · · aβi
ni

∈ Ii for every 1 ≤ i ≤ k, then

a1a2 · · · an = aβ1

1

aβ1

2

· · ·aβ1
n1

aβ2

1

aβ2

2

· · · aβ2
n2

· · · aβk
1

aβk
2

· · · aβk
nk

∈ L,

thus we are done. Therefore we may assume that aβ1

1

aβ1

2

· · · aβ1
n1

/∈ I1. Since

I1 is φ-n1-absorbing primary and

aβ1

1

aβ1

2

· · · aβ1
n1

aβ2

1

aβ2

2

· · · aβ2
n2

· · ·aβk
1

aβk
2

· · · aβk
nk

an+1 = a1 · · · an+1 ∈ I1\φ(I1),
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then we have aβ1

1

· · · âβ1

t
· · · aβ1

n1

aβ2

1

aβ2

2

· · ·aβ2
n2

· · · aβk
1

aβk
2

· · · aβk
nk

an+1 ∈ P1 for

some 1 ≤ t ≤ n1. On the other hand

aβ1

1

· · · âβ1

t
· · · aβ1

n1

aβ2

1

aβ2

2

· · ·aβ2
n2

· · · aβk
1

aβk
2

· · ·aβk
nk

an+1 ∈ P2 ∩ · · · ∩ Pk.

Consequently aβ1

1

· · · âβ1

t
· · · aβ1

n1

aβ2

1

aβ2

2

· · · aβ2
n2

· · ·aβk
1

aβk
2

· · · aβk
nk

an+1 ∈
√
L,

which is a contradiction. Similarly we deduce that aβi
1

aβi
2

· · · aβi
ni

∈ Ii for

every 2 ≤ i ≤ k. Then a1a2 · · · an ∈ L.
(2) The proof is similar to that of part (1). �

Corollary 2.9. Let R be a ring with 1 6= 0 and let P1, P2, . . . , Pn be prime

ideals of R. Suppose that for every 1 ≤ i ≤ n, P ti
i is a Pi-primary ideal of R

where ti is a positive integer. Then P t1
1 ∩ P t2

2 ∩ · · · ∩ P tn
n and P t1

1 P
t2
2 · · ·P tn

n

are n-absorbing primary ideals of R. In particular, P1 ∩ P2 ∩ · · · ∩ Pn and

P1P2 · · ·Pn are n-absorbing primary ideals of R.

Example 2.10. Let R = Z[X2, X3, . . . , Xn] + 3X1Z[X2, X3, . . . , Xn, X1]. Set
Pi := Xi+1R for 1 ≤ i ≤ n−1 and Pn := 3X1Z[X2, X3, . . . , Xn, X1]. Note that
for every 1 ≤ i ≤ n, Pi is a prime ideal of R. Let I = P1P2 · · ·Pn−1P

2
n . Then

3X2
1 .X2. · · · .Xn.3 = 9X2

1X2 · · ·Xn ∈ I and 3X2
1 .X2. · · · .Xn = 3X2

1X2 · · ·Xn /∈

I. On the other hand X2. · · · .Xn.3 = 3X2 · · ·Xn /∈
√
I ⊆ Pn and 3X2

1 .X2. · · · .

X̂i. · · · .Xn.3 = 9X2
1X2 · · · X̂i · · ·Xn /∈

√
I ⊆ Pi−1 for every 2 ≤ i ≤ n. Hence

I is not n-absorbing primary.

In [6, Example 2.7], the authors offered an example to show that if I ⊂ J

such that I is a 2-absorbing primary ideal of R and
√
I =

√
J , then J need not

be a 2-absorbing ideal of R. They considered the ideal J = 〈XY Z, Y 3, X3〉 of

the ring R = Z[X,Y, Z] and showed that
√
J = 〈XY 〉. But X ∈

√
J , which is

a contradiction. Therefore their example is incorrect. In the following example
we show that if I ⊂ J such that I is a n-absorbing primary ideal of R and√
I =

√
J , then J need not be a n-absorbing ideal of R.

Example 2.11. Let R = K[X1, X2, . . . , Xn+2] where K is a field. Consider
the ideal J = 〈X1X2 · · ·Xn+1, X

2
1X2 · · ·Xn, X

2
1Xn+2〉 of R. Then

√
J = 〈X1X2 · · ·Xn, X1Xn+2〉

= 〈X1〉 ∩ 〈X2, Xn+2〉 ∩ 〈X3, Xn+2〉 ∩ · · · ∩ 〈Xn, Xn+2〉.

Set P1 = 〈X1〉 and Pi = 〈Xi, Xn+2〉 for every 2 ≤ i ≤ n. Note that Pi’s are

prime ideals of R. Let I = P 2
1P2 · · ·Pn. Then I ⊂ J and

√
I =

√
J = ∩n

i=1Pi.
By Corollary 2.9, I is an n-absorbing primary ideal of R, but J is not an n-
absorbing primary ideal of R becauseX1X2 · · ·Xn+1 ∈ J , but X1X2 · · ·Xn /∈ J

and X2 · · ·Xn+1 /∈
√
J ⊆ 〈X1〉 and X1 · · · X̂i · · ·Xn+1 /∈

√
J ⊆ 〈Xi, Xn+2〉 for

every 2 ≤ i ≤ n.
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Theorem 2.12. Let R be a ring, and let φ : J(R) → J(R)∪{∅} be a function.

Suppose that I is an ideal of R such that

√
φ(
√
I) ⊆ φ(I). If

√
I is a φ-(n−1)-

absorbing ideal of R, then I is a φ-n-absorbing primary ideal of R.

Proof. Let
√
I be φ-(n− 1)-absorbing. Assume that a1a2 · · · an+1 ∈ I\φ(I) for

some a1, a2, . . . , an+1 ∈ R and a1a2 · · · an /∈ I. Hence

(a1an+1)(a2an+1) · · · (anan+1) = (a1a2 · · · an)a
n
n+1 ∈ I ⊆

√
I.

Notice that, if (a1a2 · · ·an)a
n
n+1 ∈ φ(

√
I), then a1a2 · · · anan+1 ∈

√
φ(
√
I) ⊆

φ(I) which is a contradiction. Therefore

(a1an+1)(a2an+1) · · · (anan+1) ∈
√
I\φ(

√
I).

Then for some 1 ≤ i ≤ n,

(a1an+1) · · · ̂(aian+1) · · · (anan+1) = (a1 · · · âi · · ·an)a
n−1
n+1 ∈

√
I,

and so a1 · · · âi · · · anan+1 ∈
√
I. Consequently I is φ-n-absorbing primary. �

The following example gives an ideal J of a ring R where
√
J is an n-

absorbing ideal of R, but J is not an n-absorbing primary ideal of R.

Example 2.13. Let R = K[X1, X2, . . . , Xn+2] where K is a field and let
J = 〈X1X2 · · ·Xn+1, X

2
1X2 · · ·Xn, X

2
1Xn+2〉. Then

√
J = 〈X1〉 ∩ 〈X2, Xn+2〉 ∩ 〈X3, Xn+2〉 ∩ · · · ∩ 〈Xn, Xn+2〉.

By [3, Theorem 2.1(c)],
√
J is an n-absorbing ideal of R, but J is not an

n-absorbing primary ideal of R as it is shown in Example 2.11.

We know that if I is an ideal of a ring R such that
√
I is a maximal ideal of

R, then I is a primary ideal of R.

Theorem 2.14. Let I be an ideal of a ring R. If
√
I = M1 ∩M2 ∩ · · · ∩Mn

where Mi’s are maximal ideals of R, then I is an n-absorbing primary ideal of

R.

Proof. Let a1a2 · · · an+1 ∈ I for some a1, a2, . . . , an+1 ∈ R such that a1 · · · âi · · ·

an+1 /∈
√
I for every 1 ≤ i ≤ n. If for some 1 ≤ i ≤ n, a1 · · · âi · · · an+1 ∈ Mj

(for every 1 ≤ j ≤ n), then a1 · · · âi · · · an+1 ∈
√
I and so we are done. Without

loss of generality we may assume that for every 1 ≤ i ≤ n, a1 · · · âi · · · an+1 /∈
Mi, respectively. Since Mi’s are maximal, then Mi +R(a1 · · · âi · · · an+1) = R
for every 1 ≤ i ≤ n. Therefore for every 1 ≤ i ≤ n there are mi ∈ Mi and
ri ∈ R such that mi + ri(a1 · · · âi · · · an+1) = 1. So

m1m2 · · ·mn +

n∑

t=1

n−t+1∑

α1=1
α1<α2<
···<αt≤n

[rα1
rα2

· · · rαt
(m1 · · · m̂α1

· · · m̂α2
· · · m̂αt

· · ·mn)
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t∏

i=1

(a1 · · · âαi
· · · an+1)] = 1.

Since m1m2 · · ·mn ∈
√
I, hence (m1m2 · · ·mn)

t ∈ I for some t ≥ 1. Thus

(m1m2 · · ·mn)
t + s

[ n∑

t=1

n−t+1∑

α1=1
α1<α2<
···<αt≤n

[rα1
rα2

· · · rαt
(m1 · · · m̂α1

· · · m̂α2
· · · m̂αt

· · ·mn)

t∏

i=1

(a1 · · · âαi
· · ·an+1)]

]
= 1

for some s ∈ R. Multiply a1a2 · · · an on both sides to get

a1a2 · · · an = a1a2 · · · an(m1m2 · · ·mn)
t+

s
[ n∑

t=1

n−t+1∑

α1=1
α1<α2<
···<αt≤n

[rα1
rα2

· · · rαt
(m1 · · · m̂α1

· · · m̂α2
· · · m̂αt

· · ·mn)

(a1a2 · · · an)

t∏

i=1

(a1 · · · âαi
· · ·an+1)]

]
∈ I.

Hence I is an n-absorbing primary ideal. �

Let R be an integral domain with 1 6= 0 and let K be the quotient field
of R. A nonzero ideal I of R is said to be invertible if II−1 = R, where
I−1 = {x ∈ K | xI ⊆ R}. An integral domain R is said to be a Dedekind

domain if every nonzero proper ideal of R is invertible.

Theorem 2.15. Let R be a Noetherian integral domain with 1 6= 0 that is not

a field . The following conditions are equivalent:
(1) R is a Dedekind domain;
(2) A nonzero proper ideal I of R is an n-absorbing primary ideal of R if

and only if I =M t1
1 M

t2
2 · · ·M ti

i for some 1 ≤ i ≤ n and some distinct maximal

ideals M1,M2, . . . ,Mi of R and some positive integers t1, t2, . . . , ti;
(3) If I is a nonzero n-absorbing primary ideal of R, then I=M t1

1 M
t2
2 · · ·M ti

i

for some 1 ≤ i ≤ n and some distinct maximal ideals M1,M2, . . . ,Mi of R and

some positive integers t1, t2, . . . , ti;
(4) A nonzero proper ideal I of R is an n-absorbing primary ideal of R if

and only if I = P t1
1 P

t2
2 · · ·P ti

i for some 1 ≤ i ≤ n and some distinct prime

ideals P1, P2, . . . , Pi of R and some positive integers t1, t2, . . . , ti;
(5) If I is a nonzero n-absorbing primary ideal of R, then I = P t1

1 P
t2
2 · · ·P ti

i

for some 1 ≤ i ≤ n and some distinct prime ideals P1, P2, . . . , Pi of R and

some positive integers t1, t2, . . . , ti.



558 H. MOSTAFANASAB AND A. YOUSEFIAN DARANI

Proof. (1)⇒(2) Assume that R is a Dedekind domain that is not a field. Then
every nonzero prime ideal of R is maximal. Let I be a nonzero n-absorbing
primary ideal of R. Since R is a Dedekind domain, then there are distinct
maximal ideals M1,M2, . . . ,Mi of R (k ≥ 1) such that I =M t1

1 M
t2
2 · · ·M ti

i in

which tj ’s are positive integers. Therefore
√
I = M1 ∩M2 ∩ · · · ∩Mi. Since I

is n-absorbing primary and every prime ideal of R is maximal, then
√
I is the

intersection of at most n maximal ideals of R, by Corollary 2.7. So i ≤ n.
Conversely, suppose that I = M t1

1 M
t2
2 · · ·M ti

i for some 1 ≤ i ≤ n and
some distinct maximal ideals M1,M2, . . . ,Mi of R and some positive integers
t1, t2, . . . , ti. Then I is n-absorbing primary, by Corollary 2.9.

(1)⇒(4) The proof is similar to that of (1)⇒(2).
(2)⇒(3), (3)⇒(5) and (4)⇒(5) are evident.
(5)⇒(1) Let M be an arbitrary maximal ideal of R and I be an ideal of R

such that M2 ⊂ I ⊂ M . Hence
√
I = M and so I is M -primary. Then I is

n-absorbing primary, and thus by part (5) we have that I = P t1
1 P

t2
2 · · ·P ti

i for
some 1 ≤ i ≤ n and some distinct prime ideals P1, P2, . . . , Pi of R and some
positive integers t1, t2, . . . , ti. Then

√
I = P1 ∩ P2 ∩ · · · ∩ Pi =M which shows

that I is a power ofM , a contradiction. Therefore, there are no ideals properly
between M2 and M . Consequently R is a Dedekind domain, by [13, Theorem
39.2, p. 470]. �

Since every principal ideal domain is a Dedekind domain, we have the fol-
lowing result as a consequence of Theorem 2.15.

Corollary 2.16. Let R be a principal ideal domain and I be a nonzero proper

ideal of R. Then I is an n-absorbing primary ideal of R if and only if I =
R(pt11 p

t2
2 · · · ptii ), where pj’s are prime elements of R, 1 ≤ i ≤ n and tj’s are

some integers.

The following example shows that an n-absorbing primary ideal of a ring
R need not be of the form P t1

1 P
t2
2 · · ·P ti

i , where Pj ’s are prime ideals of R,
1 ≤ i ≤ n and tj ’s are some integers.

Example 2.17. Let R = K[X1, X2, . . . , Xn] where K is a field and let I =
〈X1, X2, . . . , Xn−1, X

2
n〉. Since I is 〈X1, X2, . . . , Xn〉-primary, then I is an n-

absorbing primary ideal of R. But I is not in the form of P t1
1 P

t2
2 · · ·P ti

i , where
Pj ’s are prime ideals of R, 1 ≤ i ≤ n and tj ’s are some integers.

Theorem 2.18. Let R be a ring, a ∈ R a nonunit and m ≥ 2 a positive

integer. If (0 :R a) ⊆ 〈a〉, then 〈a〉 is φ-n-absorbing primary for some φ with

φ ≤ φm if and only if 〈a〉 is n-absorbing primary.

Proof. We may assume that 〈a〉 is φm-n-absorbing primary. Let x1x2 · · ·xn+1 ∈
〈a〉 for some x1, x2, . . . , xn+1∈R. If x1x2 · · ·xn+1 /∈〈am〉, then either x1x2 · · ·xn
∈ 〈a〉 or x1 · · · x̂i · · ·xn+1 ∈

√
〈a〉 for some 1 ≤ i ≤ n. Therefore, assume that

x1x2 · · ·xn+1 ∈ 〈am〉. Hence x1x2 · · ·xn(xn+1 + a) ∈ 〈a〉. If x1x2 · · ·xn(xn+1 +

a) /∈ 〈am〉, then either x1x2 · · ·xn ∈ 〈a〉 or x1 · · · x̂i · · ·xn(xn+1 + a) ∈
√
〈a〉
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for some 1 ≤ i ≤ n. So, either x1x2 · · ·xn ∈ 〈a〉 or x1 · · · x̂i · · ·xn+1 ∈
√
〈a〉

for some 1 ≤ i ≤ n. Hence, suppose that x1x2 · · ·xn(xn+1 + a) ∈ 〈am〉.
Thus x1x2 · · ·xn+1 ∈ 〈am〉 implies that x1x2 · · ·xna ∈ 〈am〉. Therefore, there
exists r ∈ R such that x1x2 · · ·xn − ram−1 ∈ (0 :R a) ⊆ 〈a〉. Consequently
x1x2 · · ·xn ∈ 〈a〉. �

Corollary 2.19. Let R be an integral domain, a ∈ R a nonunit element and

m ≥ 2 a positive integer. Then 〈a〉 is φ-n-absorbing primary for some φ with

φ ≤ φm if and only if 〈a〉 is n-absorbing primary.

Theorem 2.20. Let V be a valuation domain and n be a natural number.

Suppose that I is an ideal of V such that In+1 is not principal. Then I is a

φn+1-n-absorbing primary if and only if it is n-absorbing primary.

Proof. (⇒) Assume that I is φn+1-n-absorbing primary that is not n-absorbing
primary. Therefore there are a1, . . . , an+1 ∈ R such that a1 · · · an+1 ∈ I, but

neither a1 · · · an ∈ I nor a1 · · · âi · · · an+1 ∈
√
I for every 1 ≤ i ≤ n. Hence

〈ai〉 6⊆ I for every 1 ≤ i ≤ n+ 1. Since V is a valuation domain, thus I ⊂ 〈ai〉
for every 1 ≤ i ≤ n+1, and so In+1 ⊆ 〈a1 · · · an+1〉. Since I

n+1 is not principal,
then a1 · · ·an+1 ∈ I\In+1. Therefore I φn+1-n-absorbing primary implies that

either a1 · · · an ∈ I or a1 · · · âi · · · an+1 ∈
√
I for some 1 ≤ i ≤ n, which is a

contradiction. Consequently I is n-absorbing primary.
(⇐) is trivial. �

Let J be an ideal of R and φ : J(R) → J(R) ∪ {∅} be a function. Define
φJ : I(R/J) → I(R/J) ∪ {∅} by φJ(I/J) = (φ(I) + J)/J for every ideal
I ∈ J(R) with J ⊆ I (and φJ (I/J) = ∅ if φ(I) = ∅).

Theorem 2.21. Let J ⊆ I be proper ideals of a ring R, and let φ : J(R) →
J(R) ∪ {∅} be a function.

(1) If I is a φ-n-absorbing primary ideal of R, then I/J is a φJ -n-absorbing
primary ideal of R/J .

(2) If J ⊆ φ(I) and I/J is a φJ -n-absorbing primary ideal of R/J , then I
is a φ-n-absorbing primary ideal of R.

(3) If φ(I) ⊆ J and I is a φ-n-absorbing primary ideal of R, then I/J is

a weakly n-absorbing primary ideal of R/J .
(4) If φ(J) ⊆ φ(I), J is a φ-n-absorbing primary ideal of R and I/J is

a weakly n-absorbing primary ideal of R/J , then I is a φ-n-absorbing
primary ideal of R.

Proof. (1) Let a1, a2, . . . , an+1 ∈ R be such that (a1 + J)(a2 + J) · · · (an+1 +
J) ∈ (I/J)\φJ (I/J) = (I/J)\(φ(I) + J)/J . Then a1a2 · · · an+1 ∈ I\φ(I)
and I φ-n-absorbing primary gives either a1 · · · an ∈ I or a1 · · · âi · · ·an+1 ∈√
I for some 1 ≤ i ≤ n. Therefore either (a1 + J) · · · (an + J) ∈ I/J or

(a1 + J) · · · ̂(ai + J) · · · (an+1 + J) ∈
√
I/J =

√
I/J for some 1 ≤ i ≤ n. This

shows that I/J is φJ -n-absorbing primary.



560 H. MOSTAFANASAB AND A. YOUSEFIAN DARANI

(2) Suppose that a1a2 · · · an+1 ∈ I\φ(I) for some a1, a2, . . . , an+1 ∈ R. Then
(a1+J)(a2+J) · · · (an+1+J) ∈ (I/J)\(φ(I)/J) = (I/J)\φJ(I/J). Since I/J is
assumed to be φJ -n-absorbing primary, we get either (a1+J) · · · (an+J) ∈ I/J

or (a1 + J) · · · ̂(ai + J) · · · (an+1 + J) ∈
√
I/J =

√
I/J for some 1 ≤ i ≤ n.

Consequently, either a1 · · · an ∈ I or a1 · · · âi · · · an+1 ∈
√
I for some 1 ≤ i ≤ n,

that I is φ-n-absorbing primary.
(3) is a direct consequence of part (1).
(4) Let a1 · · · an+1 ∈ I\φ(I) where a1, . . . , an+1 ∈ R. Note that a1 · · · an+1 /∈

φ(J) because φ(J) ⊆ φ(I). If a1 · · · an+1 ∈ J , then either a1 · · · an ∈ J ⊆ I

or a1 · · · âi · · · an+1 ∈
√
J ⊆

√
I for some 1 ≤ i ≤ n, since J is φ-n-absorbing

primary. If a1 · · ·an+1 /∈ J , then (a1 + I) · · · (an+1 + I) ∈ (I/J)\{0} and so

either (a1+I) · · · (an+I) ∈ I/J or (a1+J) · · · ̂(ai + J) · · · (an+1+J) ∈
√
I/J =√

I/J for some 1 ≤ i ≤ n. Therefore, either a1 · · ·an ∈ I or a1 · · · âi · · · an+1 ∈√
I for some 1 ≤ i ≤ n. Consequently I is a φ-n-absorbing primary ideal of

R. �

Corollary 2.22. Let R be a ring, and let φ : J(R) → J(R)∪{∅} be a function.

An ideal I of R is φ-n-absorbing primary if and only if I/φ(I) is a weakly

n-absorbing primary ideal of R/φ(I).

Proof. In parts (2) and (3) of Theorem 2.21 set J = φ(I). �

Corollary 2.23. Let R be a ring, φ : J(R) → J(R) ∪ {∅} be a function and

L be a proper ideal of R such that φ(〈X〉) ⊆ φ(〈L,X〉) ⊆ 〈X〉. If 〈L,X〉 is a

φ-n-absorbing primary ideal of R[X ], then L is a weakly n-absorbing primary

ideal of R. The converse holds if in addition R is an integral domain.

Proof. Consider the isomorphism 〈L,X〉/〈X〉 ≃ L in R[X ]/〈X〉 ≃ R. Set
I := 〈L,X〉 and J := 〈X〉. Assume that 〈L,X〉 is a φ-n-absorbing primary
ideal of R[X ]. So, by part (3) of Theorem 2.21, I/J ≃ L is a weakly n-
absorbing primary ideal of R[X ]/J ≃ R. Now, suppose that R is an integral
domain and L is a weakly n-absorbing primary ideal of R. Since J = 〈X〉 is
a prime ideal of R[X ], then it is φ-n-absorbing primary. On the other hand
I/J ≃ L is a weakly n-absorbing primary ideal of R[X ]/J ≃ R. Hence, part
(4) of Theorem 2.21 implies that I = 〈L,X〉 is a φ-n-absorbing primary ideal
of R[X ]. �

Let S be a multiplicatively closed subset of a ring R. Let φ : J(R) → J(R)∪
{∅} be a function and define φS : I(RS) → I(RS)∪{∅} by φS(J) = (φ(J ∩R))S
(and φS(J) = ∅ if φ(J ∩R) = ∅) for every ideal J of RS . Note that φS(J) ⊆ J .
Let M be an R-module. The set of all zero divisors on M is:

ZR(M) = {r ∈ R | there exists an element 0 6= x ∈M such that rx = 0}.

Proposition 2.24. Let R be a ring and φ : J(R) → J(R) ∪ {∅} be a function.

Suppose that S is a multiplicatively closed subset of R and I is a proper ideal

of R.
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(1) If I is a φ-n-absorbing primary ideal of R with I ∩ S = ∅ and φ(I)S ⊆
φS(IS), then IS is a φS-n-absorbing primary ideal of RS.

(2) If IS is a φS-n-absorbing primary ideal of RS with φS(IS) ⊆ φ(I)S ,
S∩ZR(

I
φ(I)) = ∅ and S∩ZR(

R
I
) = ∅, then I is a φ-n-absorbing primary

ideal of R.

Proof. (1) Assume that a1

s1

a2

s2
· · · an+1

sn+1

∈ IS\φS(IS) for some a1

s1
, a2

s2
, . . . , an+1

sn+1

∈

RS such that a1

s1

a2

s2
· · · an

sn
/∈ IS . Since a1

s1

a2

s2
· · · an+1

sn+1

∈ IS , then there is s ∈ S

such that sa1a2 · · · an+1 ∈ I. If sa1a2 · · · an+1 ∈ φ(I), then a1

s1

a2

s2
· · · an+1

sn+1

=
sa1a2···an+1

ss1s2···sn+1

∈ φ(I)S ⊆ φS(IS), a contradiction. Hence a1a2 · · ·an(san+1) ∈

I\φ(I). As I is φ-n-absorbing primary, we get either a1a2 · · · an ∈ I or

a1 · · · âi · · · an(san+1) ∈
√
I for some 1 ≤ i ≤ n. The first case implies that

a1

s1

a2

s2
· · · an

sn
∈ IS which is a contradiction, and the second case implies that

a1

s1
· · · âi

si
· · · an+1

sn+1

∈ (
√
I)S =

√
IS for some 1 ≤ i ≤ n. Consequently IS is a

φS-n-absorbing primary ideal of RS .
(2) Let a1a2 · · · an+1∈I\φ(I) for some a1, a2, . . . , an+1∈R and let a1a2 · · ·an

/∈ I. Then a1

1
a2

1 · · · an+1

1 ∈ IS . Assume that a1

1
a2

1 · · · an+1

1 ∈ φS(IS). Since
φS(IS) ⊆ φ(I)S , then there exists a s ∈ S such that sa1a2 · · ·an+1 ∈ φ(I).
Since S ∩ ZR(

I
φ(I) ) = ∅ we have that a1a2 · · · an+1 ∈ φ(I), which is a contra-

diction. Therefore a1

1
a2

1 · · · an+1

1 ∈ IS\φS(IS). Hence, either a1

1
a2

1 · · · an

1 ∈ IS

or a1

1 · · · âi

1 · · · an+1

1 ∈
√
IS = (

√
I)S for some 1 ≤ i ≤ n. If a1

1
a2

1 · · · an

1 ∈ IS ,
then there exists u ∈ S such that ua1a2 · · ·an ∈ I and so the assumption
S ∩ ZR(

R
I
) = ∅ shows that a1a2 · · · an ∈ I, a contradiction. Therefore, there

is 1 ≤ i ≤ n such that a1

1 · · · âi

1 · · · an+1

1 ∈ (
√
I)S , and thus there is a t ∈ S

such that ta1 · · · âi · · ·an+1 ∈
√
I. Note that S ∩ ZR(

R
I
) = ∅ implies that

S∩ZR(
R
√
I
) = ∅, then a1 · · · âi · · · an+1 ∈

√
I. Consequently I is a φ-n-absorbing

primary ideal of R. �

Let f : R→ T be a homomorphism of rings and let φT : J(T ) → J(T )∪ {∅}
be a function. Define φR : J(R) → J(R) ∪ {∅} by φR(I) = φT (I

e)c (and
φR(I) = ∅ if φT (I

e) = ∅). We recall that if R is a Prüfer domain or T = RS

for some multiplicatively closed subset S of R, then for every ideal J of T we
have Jce = J .

Theorem 2.25. Let f : R → T be a homomorphism of rings. If J is a φT -n-
absorbing primary ideal of T such that φT (J) ⊆ φT (J

ce) (e.g. where J = Jce ),
then Jc is a φR-n-absorbing primary ideal of R.

Proof. Let a1a2 · · · an+1 ∈ Jc\φR(J
c) for some a1, a2 . . . , an+1 ∈ R. If

f(a1)f(a2) · · · f(an+1) ∈ φT (J),

then a1a2 · · · an+1 ∈ φT (J)
c ⊆ φT (J

ce)c = φR(J
c), which is a contradiction.

Therefore f(a1)f(a2) · · · f(an+1)∈J\φT (J). Hence, either f(a1)f(a2) · · · f(an)

∈ J or f(a1) · · · f̂(ai) · · · f(an+1) ∈
√
J for some 1 ≤ i ≤ n. Thus, either
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a1a2 · · · an ∈ Jc or a1 · · · âi · · · an+1 ∈
√
Jc for some 1 ≤ i ≤ n. Consequently

Jc is a φR-n-absorbing primary ideal of R. �

Let R, T be rings and ψR : J(R) → J(R) ∪ {∅} be a function. Define
ψT : J(T ) → J(T ) ∪ {∅} by ψT (J) = ψR(J

c)e (and ψT (J) = ∅ if ψR(J
c) = ∅).

We recall that if f : R → T is a faithfully flat homomorphism of rings, then for
every ideal I of R we have Iec = I.

Theorem 2.26. Let f : R → T be a faithfully flat homomorphism of rings.

(1) If J is a ψT -n-absorbing primary ideal of T , then Jc is a ψR-n-absorbing
primary ideal of R.

(2) If Ie is a ψT -n-absorbing primary ideal of T for some ideal I or R, then
I is a ψR-n-absorbing primary ideal of R.

Proof. (1) Suppose that J is a ψT -n-absorbing primary ideal of T . In Theorem
2.25 get φT := ψT . Let I be an ideal of R. Then

φR(I) = φT (I
e)c = ψT (I

e)c = ψR(I
ec)ec = ψR(I).

So φR = ψR. Moreover, ψT (J) = ψR(J
c)e = ψR(J

cec)e = ψT (J
ce). Therefore

Jc is a ψR-n-absorbing primary ideal of R.
(2) By part (1). �

Proposition 2.27. Let I be an ideal of a ring R such that φ(I) be an n-
absorbing primary ideal of R. If I is a φ-n-absorbing primary ideal of R, then
I is an n-absorbing primary ideal of R.

Proof. Assume that a1a2 · · · an+1 ∈ I for some elements a1, a2, . . . , an+1 ∈ R
such that a1a2 · · · an /∈ I. If a1a2 · · · an+1 ∈ φ(I), then φ(I) n-absorbing

primary and a1a2 · · · an /∈ φ(I) implies that a1 · · · âi · · ·an+1 ∈
√
φ(I) ⊆

√
I

for some 1 ≤ i ≤ n, and so we are done. When a1a2 · · · an+1 /∈ φ(I) clearly the
result follows. �

We say that a φ-prime ideal P of a ring R is a divided φ-prime ideal if
P ⊂ xR for every x ∈ R\P ; thus a divided φ-prime ideal is comparable to
every ideal of R.

Theorem 2.28. Let P be a divided φ-prime ideal of a ring R. Suppose that

I is a φ-n-absorbing ideal of R with
√
I = P and φ(P ) ⊆ φ(I). Then I is a

φ-primary ideal of R.

Proof. Let xy ∈ I\φ(I) for x, y ∈ R and y /∈ P . Since xy ∈ P\φ(P ), then

x ∈ P . If yn−1 ∈ φ(P ), then y ∈
√
I = P , which is a contradiction. Therefore

yn−1 /∈ φ(P ), and so yn−1 /∈ P . Thus P ⊂ yn−1R, because P is a divided
φ-prime ideal of R. Hence x = yn−1z for some z ∈ R. As ynz = yx ∈ I\φ(I),
yn /∈ I, and I is a φ-n-absorbing ideal of R, we have x = yn−1z ∈ I. Hence I
is a φ-primary ideal of R. �
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Let I be an ideal of a ring R and φ : J(R) → J(R) ∪ {∅} be a function.
Assume that I is a φ-n-absorbing primary ideal of R and a1, . . . , an+1 ∈ R.
We say that (a1, . . . , an+1) is an φ-(n + 1)-tuple of I if a1 · · · an+1 ∈ φ(I),

a1a2 · · · an /∈ I and for each 1 ≤ i ≤ n, a1 · · · âi · · · an+1 /∈
√
I.

In the following theorem a1 · · · âi · · · âj · · · an denotes that ai and aj are
eliminated from a1 · · · an.

Theorem 2.29. Let I be a φ-n-absorbing primary ideal of a ring R and suppose

that (a1, . . . , an+1) is a φ-(n + 1)-tuple of I for some a1, . . . , an+1 ∈ R. Then

for every elements α1, α2, . . . , αm ∈ {1, 2, . . . , n+ 1} which 1 ≤ m ≤ n,

a1 · · · âα1
· · · âα2

· · · âαm
· · · an+1I

m ⊆ φ(I).

Proof. We use induction onm. Letm = 1 and suppose that a1 · · · âα1
· · · an+1x

/∈ φ(I) for some x ∈ I. Then a1 · · · âα1
· · · an+1(aα1

+ x) /∈ φ(I). Since I is a
φ-n-absorbing primary ideal of R and a1 · · · âα1

· · · an+1 /∈ I, we conclude that

a1 · · · âα1
· · · âα2

· · · an+1(aα1
+x) ∈

√
I, for some 1 ≤ α2 ≤ n+1 different from

α1. Hence a1 · · · âα2
· · ·an+1 ∈

√
I, a contradiction. Thus a1 · · · âα1

· · · an+1I ⊆
φ(I).

Now suppose m > 1 and assume that for all integers less than m the
claim holds. Let a1 · · · âα1

· · · âα2
· · · âαm

· · · an+1x1x2 · · ·xm /∈ φ(I) for some
x1, x2, . . . , xm ∈ I. By induction hypothesis, we conclude that there exists
ζ ∈ φ(I) such that

a1 · · · âα1
· · · âα2

· · · âαm
· · · an+1(aα1

+ x1)(aα2
+ x2) · · · (aαm

+ xm)

= ζ + a1 · · · âα1
· · · âα2

· · · âαm
· · · an+1x1x2 · · ·xm /∈ φ(I).

Now, we consider two cases.
Case 1. Assume that αm < n + 1. Since I is φ-n-absorbing primary, then
either

a1 · · · âα1
· · · âα2

· · · âαm
· · ·an(aα1

+ x1)(aα2
+ x2) · · · (aαm

+ xm) ∈ I,

or

a1 · · · âα1
· · · âα2

· · · âαm
· · · âj · · · an+1(aα1

+ x1)(aα2
+ x2) · · · (aαm

+ xm) ∈
√
I

for some j < n+ 1 distinct from αi’s; or

a1 · · · âα1
· · · âα2

· · · âαm
· · · an+1(aα1

+ x1) · · · ̂(aαi
+ xi) · · · (aαm

+ xm) ∈
√
I

for some 1 ≤ i ≤ m. Thus either a1a2 · · · an ∈ I or a1 · · · âj · · · an+1 ∈
√
I or

a1 · · · âαi
· · · an+1 ∈

√
I, which any of these cases has a contradiction.

Case 2. Assume that αm = n + 1. Since I is φ-n-absorbing primary, then
either

a1 · · · âα1
· · · âα2

· · · âαm−1
· · · ân+1(aα1

+ x1)(aα2
+ x2) · · · ̂(aαm

+ xm) ∈ I,

or

a1 · · · âα1
· · · âα2

· · · âαm−1
· · · âj · · · ân+1(aα1

+x1)(aα2
+x2) · · · (aαm

+xm) ∈
√
I
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for some j < n+ 1 different from αi’s; or

a1 · · · âα1
· · · âα2

· · · âαm−1
· · · ân+1(aα1

+ x1) · · · ̂(aαi
+ xi) · · · (aαm

+ xm) ∈
√
I

for some 1 ≤ i ≤ m − 1. Thus either a1a2 · · · an ∈ I or a1 · · · âj · · · an+1 ∈
√
I

or a1 · · · âαi
· · ·an+1 ∈

√
I, which any of these cases has a contradiction. Thus

a1 · · · âα1
· · · âα2

· · · âαm
· · · an+1I

m ⊆ φ(I). �

Theorem 2.30. Let I be an φ-n-absorbing primary ideal of R that is not an

n-absorbing primary ideal. Then

(1) In+1 ⊆ φ(I).

(2)
√
I =

√
φ(I).

Proof. (1) Since I is not an n-absorbing primary ideal of R, I has an φ-
(n + 1)-triple-zero (a1, . . . , an+1) for some a1, . . . , an+1 ∈ R. Suppose that
x1x2 · · ·xn+1 /∈ φ(I) for some x1, x2, . . . , xn+1 ∈ I. Then by Theorem 2.29,
there is ζ ∈ φ(I) such that (a1+x1) · · · (an+1+xn+1) = ζ+x1x2 · · ·xn+1 /∈ φ(I).

Hence either (a1 + x1) · · · (an + xn) ∈ I or (a1 + x1) · · · ̂(ai + xi) · · · (an+1 +

xn+1) ∈
√
I for some 1 ≤ i ≤ n. Thus either a1 · · · an ∈ I or a1 · · · âi · · · an+1 ∈√

I for some 1 ≤ i ≤ n, a contradiction. Hence In+1 ⊆ φ(I).

(2) Clearly,
√
φ(I) ⊆

√
I. As In+1 ⊆ φ(I), we get

√
I ⊆

√
φ(I), as required.

�

Corollary 2.31. Let I be an ideal of a ring R that is not n-absorbing primary.

(1) If I is weakly n-absorbing primary, then In+1 = {0} and
√
I = Nil(R).

(2) If I is φ-n-absorbing primary where φ ≤ φn+2, then I
n+1 = In+2.

Corollary 2.32. Let I be a φ-n-absorbing primary ideal where φ ≤ φn+2.

Then I is ω-n-absorbing primary.

Proof. If I is n-absorbing primary, then it is ω-n-absorbing primary. So assume
that I is not n-absorbing primary. Then In+1 = In+2 by Corollary 2.31(2).
By hypothesis I is φ-n-absorbing primary and φ ≤ φn+1. So I is φn+1-n-
absorbing primary. On the other hand φω(I) = In+1 = φn+1(I). Therefore I
is ω-n-absorbing primary. �

Theorem 2.33. Let R be a ring and let φ : J(R) → J(R) ∪ {∅} be a function.

Suppose that {Iλ}λ∈Λ is a family of ideals of R such that for every λ, λ′ ∈ Λ,√
φ(Iλ) =

√
φ(Iλ′ ) and φ(Iλ) ⊆ φ(I) where I =

⋂
λ∈Λ Iλ. If for every λ ∈ Λ,

Iλ is a φ-n-absorbing primary ideal of R that is not n-absorbing primary, then

I is a φ-n-absorbing primary ideal of R.

Proof. Since Iλ’s are φ-n-absorbing primary but are not n-absorbing primary,
then for every λ ∈ Λ,

√
Iλ =

√
φ(Iλ), by Theorem 2.30. On the other hand

φ(Iλ) ⊆ φ(I) for every λ ∈ Λ, and so
√
φ(Iλ) ⊆

√
I. Hence

√
I =

√
Iλ =√

φ(Iλ) for every λ ∈ Λ. Let a1a2 · · ·an+1 ∈ I\φ(I) for some a1, a2, . . . , an+1 ∈
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R, and let a1a2 · · · an /∈ I. Therefore there is a λ ∈ Λ such that a1a2 · · ·an /∈
Iλ. Since Iλ is φ-n-absorbing primary and a1a2 · · ·an+1 ∈ Iλ\φ(Iλ), then

a1 · · · âi · · · an+1 ∈
√
Iλ =

√
I for some 1 ≤ i ≤ n. Consequently I is a φ-n-

absorbing primary ideal of R. �

Corollary 2.34. Let R be a ring, φ : J(R) → J(R) ∪ {∅} be a function and I

be an ideal of R. Suppose that
√
φ(I) = φ(

√
I) that is an n-absorbing ideal of

R. If I is a φ-n-absorbing primary ideal of R, then
√
I is an n-absorbing ideal

of R.

Proof. Assume that I is a φ-n-absorbing primary ideal of R. If I is an n-
absorbing primary ideal of R, then

√
I is an n-absorbing ideal, by Theorem

2.6. If I is not an n-absorbing primary ideal of R, then by Theorem 2.30 and
by our hypothesis,

√
I =

√
φ(I) which is an n-absorbing ideal. �

Theorem 2.35. Let I be a φ-n-absorbing primary ideal of a ring R that is not

n-absorbing primary and let J be a φ-m-absorbing primary ideal of R that is

not m-absorbing primary, and n ≥ m. Suppose that the two ideals φ(I) and

φ(J) are not coprime. Then

(1)
√
I + J =

√
φ(I) + φ(J).

(2) If φ(I) ⊆ J and φ(J) ⊆ φ(I+J), then I+J is a φ-n-absorbing primary

ideal of R.

Proof. (1) By Theorem 2.30, we have
√
I =

√
φ(I) and

√
J =

√
φ(J). Now,

by [24, 2.25(i)] the result follows.
(2) Assume that φ(I) ⊆ J and φ(J) ⊆ φ(I + J). Since φ(I) + φ(J) 6= R,

then I + J is a proper ideal of R, by part (1). Since (I + J)/J ≃ I/(I ∩ J)
and I is φ-n-absorbing primary, we get that (I + J)/J is a weakly n-absorbing
primary ideal of R/J , by Theorem 2.21(3). On the other hand J is also φ-n-
absorbing primary, by Remark 2.1(6). Now, the assertion follows from Theorem
2.21(4). �

Let R be a ring and M an R-module. A submodule N of M is called a pure
submodule if the sequence 0 → N⊗RE →M⊗RE is exact for every R-module
E.

As another consequence of Theorem 2.30 we have the following corollary.

Corollary 2.36. Let R be a ring.

(1) If I is a pure φ-n-absorbing primary ideal of R that is not n-absorbing
primary, then I = φ(I).

(2) If R is von Neumann regular ring, then every φ-n-absorbing primary

ideal of R that is not n-absorbing primary is of the form φ(I) for some

ideal I of R.

Proof. Note that every pure ideal is idempotent (see [12]), also every ideal of
a von Neumann regular ring is idempotent. �
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Theorem 2.37. Let n ≥ 2 be a positive integer, R be a ring and φ : J(R) →
J(R) ∪ {∅} be a function. Let I be a φ-(n − 1)-absorbing primary ideal of R
that is not (n− 1)-absorbing primary, and J be an ideal of R such that J ⊆ I
with φ(I) ⊆ φ(J). Then J is a φ-n-absorbing primary ideal of R.

Proof. Since I is a φ-(n − 1)-absorbing primary ideal that is not (n − 1)-

absorbing primary we have
√
I =

√
φ(I), by Theorem 2.30. Hence

√
J =√

I =
√
φ(I). Let a1a2 · · ·an+1 ∈ J\φ(J) for some a1, a2, . . . , an+1 ∈ R such

that a1a2 · · · an /∈ J . Since J ⊆ I, we have a1a2 · · · an+1 ∈ I\φ(I). Consider
two cases.
Case 1. Assume that a1a2 · · ·an /∈ I. Since I is φ-(n− 1)-absorbing primary,
then it is φ-n-absorbing primary, by Remark 2.1(6). Hence a1 · · · âi · · ·an+1 ∈√
I =

√
J for some 1 ≤ i ≤ n.

Case 2. Assume that a1a2 · · · an ∈ I. Since a1a2 · · · an+1 ∈ I\φ(I), we have
that a1a2 · · ·an ∈ I\φ(I). On the other hand I is a φ-(n−1)-absorbing primary

ideal, so either a1a2 · · · an−1 ∈ I ⊆
√
J or a1 · · · âi · · · an ∈

√
I =

√
J for some

1 ≤ i ≤ n− 1. Hence a1 · · · âi · · · an+1 ∈
√
J for some 1 ≤ i ≤ n. Consequently

J is a φ-n-absorbing primary ideal of R. �

3. φ-n-absorbing primary ideals in direct products of

commutative rings

Theorem 3.1. Let R1 and R2 be rings, and let I be a weakly n-absorbing
primary ideal of R1. Then J = I × R2 is a φ-n-absorbing primary ideal of

R = R1 ×R2 for each φ with φω ≤ φ ≤ φ1.

Proof. Suppose that I is a weakly n-absorbing primary ideal of R1. If I is n-
absorbing primary, then J is n-absorbing primary and hence is φ-n-absorbing
primary, for all φ. Assume that I is not n-absorbing primary. Then In+1 = {0},
Corollary 2.31(1). Hence Jn+1 = {0} × R2 and hence φω(J) = {0} × R2.
Therefore, J\φω(J) = (I\{0}) × R2. Let (x1, y1)(x2, y2) · · · (xn+1, yn+1) ∈
J\φω(J) for some x1, x2, . . . , xn+1 ∈ R1 and y1, y2, . . . , yn+1 ∈ R2. Then
clearly x1x2 · · ·xn+1 ∈ I\{0}. Since I is weakly n-absorbing primary, either

x1 · · ·xn ∈ I or x1 · · · x̂i · · ·xn+1 ∈
√
I for some 1 ≤ i ≤ n. Therefore, either

(x1, y1) · · · (xn, yn) ∈ J = I ×R2 or (x1, y1) · · · (̂xi, yi) · · · (xn+1, yn+1) ∈
√
J =√

I × R2 for some 1 ≤ i ≤ n. Consequently J is a ω-n-absorbing primary and
hence φ-n-absorbing primary. �

Theorem 3.2. Let R be a ring and J be a finitely generated proper ideal of

R. Suppose that J is φ-n-absorbing primary, where φ ≤ φn+2. Then, either J
is weakly n-absorbing primary or Jn+1 6= 0 is idempotent and R decomposes

as R1 × R2 where R2 = Jn+1 and J = I × R2, where I is weakly n-absorbing
primary.

Proof. If J is n-absorbing primary, then J is weakly n-absorbing primary. So
we can assume that J is not n-absorbing primary. Then by Corollary 2.31(2),
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Jn+1 = Jn+2 and hence Jn+1 = J2(n+1). Thus Jn+1 is idempotent, since
Jn+1 is finitely generated, Jn+1 = 〈e〉 for some idempotent element e ∈ R.
Suppose Jn+1 = 0. So φ(J) = 0, and hence J is weakly n-absorbing primary.
Assume that Jn+1 6= 0. Put R2 = Jn+1 = Re and R1 = R(1 − e); hence
R = R1 × R2. Let I = J(1 − e), so J = I × R2, where In+1 = 0. We
show that I is weakly n-absorbing primary. Let x1, x2, . . . , xn+1 ∈ R and
x1x2 · · ·xn+1 ∈ I\{0} such that x1x2 · · ·xn /∈ I. So (x1, 0)(x2, 0) · · · (xn+1, 0) =
(x1x2 · · ·xn+1, 0) ∈ I × R2 = J . Since Jn+1 = {0} × R2 and φ(J) ⊆ Jn+1,
then (x1, 0)(x2, 0) · · · (xn+1, 0) = (x1x2 · · ·xn+1, 0) ∈ J\φ(J). Since J is φ-n-
absorbing primary, so either (x1, 0)(x2, 0) · · · (xn, 0) = (x1x2 · · ·xn, 0) ∈ I ×

R2 = J or (x1, 0) · · · (̂xi, 0) · · · (xn+1, 0) = (x1 · · · x̂i · · ·xn+1, 0) ∈
√
I × R2 =√

J for some 1 ≤ i ≤ n. The first case implies that x1x2 · · ·xn ∈ I, which is
a contradiction. The second case implies that x1 · · · x̂i · · ·xn+1 ∈

√
I for some

1 ≤ i ≤ n. Consequently I is weakly n-absorbing primary. �

Corollary 3.3. Let R be an indecomposable ring and J a finitely generated

φ-n-absorbing primary ideal of R, where φ ≤ φn+2. Then J is weakly n-
absorbing primary. Furthermore, if R is an integral domain, then J is actually

n-absorbing primary.

Corollary 3.4. Let R be a Noetherian integral domain. A proper ideal J of R
is n-absorbing primary if and only if it is (n+ 2)-almost n-absorbing primary.

Theorem 3.5. Let R = R1×· · ·×Rs be a decomposable ring and ψi : I(Ri) →
I(Ri)∪{∅} be a function for i = 1, 2, . . . , s. Set φ = ψ1×ψ2×· · ·×ψn. Suppose

that

L = I1 × · · · × Iα1−1 ×Rα1
× Iα1+1 × · · · × Iαj−1 ×Rαj

× Iαj+1 × · · · × Is

be an ideal of R in which {α1, . . . , αj} ⊂ {1, . . . , s}. Moreover, suppose that

ψαi
(Rαi

) 6= Rαi
for some αi ∈ {α1, . . . , αj}. The following conditions are

equivalent:

(1) L is a φ-n-absorbing primary ideal of R;
(2) L is an n-absorbing primary ideal of R;
(3) L′ := I1 × · · · × Iα1−1 × Iα1+1 × · · · × Iαj−1 × Iαj+1 × · · · × Is is an

n-absorbing primary ideal of

R′ := R1 × · · · ×Rα1−1 ×Rα1+1 × · · · ×Rαj−1 ×Rαj+1 × · · · ×Rs.

Proof. (1) ⇒ (2) Since ψαi
(Rαi

) 6= Rαi
for some αi ∈ {α1, . . . , αj}, then clearly

L 6⊆
√
φ(L). So by Theorem 2.30(2), L is an n-absorbing primary ideal of R.

(2) ⇒ (3) Assume that L is an n-absorbing primary ideal of R and

(a
(1)
1 , . . . , a

(1)
α1−1, a

(1)
α1+1, . . . , a

(1)
αj−1, a

(1)
αj+1, . . . , a

(1)
s )

· · · (a
(n+1)
1 , . . . , a

(n+1)
α1−1 , a

(n+1)
α1+1 , . . . , a

(n+1)
αj−1 , a

(n+1)
αj+1 , . . . , a

(n+1)
s ) ∈ L′,
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in which a
(t)
i ’s are in Ri, respectively. Then

(a
(1)
1 , . . . , a

(1)
α1−1, 1, a

(1)
α1+1, . . . , a

(1)
αj−1, 1, a

(1)
αj+1, . . . , a

(1)
s )

· · · (a
(n+1)
1 , . . . , a

(n+1)
α1−1 , 1, a

(n+1)
α1+1 , . . . , a

(n+1)
αj−1 , 1, a

(n+1)
αj+1 , . . . , a

(n+1)
s ) ∈ L.

So, either

(a
(1)
1 , . . . , a

(1)
α1−1, 1, a

(1)
α1+1, . . . , a

(1)
αj−1, 1, a

(1)
αj+1, . . . , a

(1)
s )

· · · (a
(n)
1 , . . . , a

(n)
α1−1, 1, a

(n)
α1+1, . . . , a

(n)
αj−1, 1, a

(n)
αj+1, . . . , a

(n)
s ) ∈ L,

or there exists 1 ≤ i ≤ n such that

(a
(1)
1 , . . . , a

(1)
α1−1, 1, a

(1)
α1+1, . . . , a

(1)
αj−1, 1, a

(1)
αj+1, . . . , a

(1)
s )

· · · (a
(i−1)
1 , . . . , a

(i−1)
α1−1, 1, a

(i−1)
α1+1, . . . , a

(i−1)
αj−1, 1, a

(i−1)
αj+1, . . . , a

(i−1)
s )

(a
(i+1)
1 , . . . , a

(i+1)
α1−1, 1, a

(i+1)
α1+1, . . . , a

(i+1)
αj−1, 1, a

(i+1)
αj+1, . . . , a

(i+1)
s )

· · · (a
(n+1)
1 , . . . , a

(n+1)
α1−1 , 1, a

(n+1)
α1+1 , . . . , a

(n+1)
αj−1 , 1, a

(n+1)
αj+1 , . . . , a

(n+1)
s ) ∈

√
L,

because L is an n-absorbing primary ideal of R. Hence, either

(a
(1)
1 , . . . , a

(1)
α1−1, a

(1)
α1+1, . . . , a

(1)
αj−1, a

(1)
αj+1, . . . , a

(1)
s )

· · · (a
(n)
1 , . . . , a

(n)
α1−1, a

(n)
α1+1, . . . , a

(n)
αj−1, a

(n)
αj+1, . . . , a

(n)
s ) ∈ L′,

or there exists 1 ≤ i ≤ n such that

(a
(1)
1 , . . . , a

(1)
α1−1, a

(1)
α1+1, . . . , a

(1)
αj−1, a

(1)
αj+1, . . . , a

(1)
s )

· · · (a
(i−1)
1 , . . . , a

(i−1)
α1−1, a

(i−1)
α1+1, . . . , a

(i−1)
αj−1, a

(i−1)
αj+1, . . . , a

(i−1)
s )

(a
(i+1)
1 , . . . , a

(i+1)
α1−1, a

(i+1)
α1+1, . . . , a

(i+1)
αj−1, a

(i+1)
αj+1, . . . , a

(i+1)
s )

· · · (a
(n+1)
1 , . . . , a

(n+1)
α1−1 , a

(n+1)
α1+1 , . . . , a

(n+1)
αj−1 , a

(n+1)
αj+1 , . . . , a

(n+1)
s ) ∈

√
L′.

Consequently, L′ is an n-absorbing primary ideal of R′.
(3) ⇒ (1) Let L′ is an n-absorbing primary ideal of R′. It is routine to see

that L is an n-absorbing primary ideal of R. Consequently, L is a φ-n-absorbing
primary ideal of R. �

Theorem 3.6. Let n ≥ 2 be a positive integer, R = R1×· · ·×Rn be a ring with

identity and let ψi : I(Ri) → I(Ri) ∪ {∅} be a function for i = 1, 2, . . . , n such

that ψn(Rn) 6= Rn. Set φ = ψ1 ×ψ2 × · · · ×ψn. Suppose that I1 × I2 × · · · × In
is an ideal of R which ψ1(I1) 6= I1, and for some 2 ≤ j ≤ n, ψj(Ij) 6= Ij, and
Ii is a proper ideal of Ri for each 1 ≤ i ≤ n− 1. The following conditions are

equivalent:

(1) I1 × I2 × · · · × In is a φ-n-absorbing primary ideal of R;
(2) In = Rn and I1 × I2 × · · · × In−1 is an n-absorbing primary ideal of

R1 × · · · × Rn−1 or Ii is a primary ideal of Ri for every 1 ≤ i ≤ n,
respectively;
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(3) I1 × I2 × · · · × In is an n-absorbing primary ideal of R.

Proof. (1)⇒(2) Suppose that I1×I2×· · ·×In is a φ-n-absorbing primary ideal
of R. First assume that In = Rn. Since ψn(Rn) 6= Rn, then I1× I2×· · ·× In−1

is an n-absorbing primary ideal of R1 × · · · × Rn−1 by Theorem 3.5. Now,
suppose that In 6= Rn. Fix 2 ≤ i ≤ n. We show that Ii is a primary ideal of
Ri. Suppose that ab ∈ Ii for some a, b ∈ Ri. Let x ∈ I1\ψ1(I1). Then

(x, 1, . . . , 1)(1, 0, 1, . . . , 1, . . . , 1)(1, 1, 0, 1, . . . , 1, . . . , 1) · · ·

(1, . . . , 1, 0,

i−th︷︸︸︷
1 , . . . , 1)(1, . . . ,

i−th︷︸︸︷
1 , 0, 1, . . . , 1) · · · (1, . . . , 1, 0)

(1, . . . , 1,

i−th︷︸︸︷
a , 1, . . . , 1)(1, . . . , 1,

i−th︷︸︸︷
b , 1, . . . , 1)

= (x, 0, . . . , 0,

i−th︷︸︸︷
ab , 0, . . . , 0) ∈ I1 × · · · × In\ψ1(I1)× · · · × ψn(In).

Since I1×I2×· · ·×In is φ-n-absorbing primary and Ii’s are proper, then either

(x, 1, . . . , 1)(1, 0, 1, . . . , 1, . . . , 1)(1, 1, 0, 1, . . . , 1, . . . , 1) · · ·

(1, . . . , 1, 0,

i−th︷︸︸︷
1 , . . . , 1)(1, . . . ,

i−th︷︸︸︷
1 , 0, 1, . . . , 1) · · · (1, . . . , 1, 0)

(1, . . . , 1,

i−th︷︸︸︷
a , 1, . . . , 1) = (x, 0, . . . , 0,

i−th︷︸︸︷
a , 0, . . . , 0) ∈ I1 × · · · × In,

or

(x, 1, . . . , 1)(1, 0, 1, . . . , 1, . . . , 1)(1, 1, 0, 1, . . . , 1, . . . , 1) · · ·

(1, . . . , 1, 0,

i−th︷︸︸︷
1 , . . . , 1)(1, . . . ,

i−th︷︸︸︷
1 , 0, 1, . . . , 1) · · · (1, . . . , 1, 0)

(1, . . . , 1,

i−th︷︸︸︷
b , 1, . . . , 1) = (x, 0, . . . , 0,

i−th︷︸︸︷
b , 0, . . . , 0) ∈

√
I1 × · · · × In,

and thus either a ∈ Ii or b ∈
√
Ii. Consequently Ii is a primary ideal of Ri.

Since for some 2 ≤ j ≤ n, ψj(Ij) 6= Ij , similarly we can show that I1 is a
primary ideal of R1.

(2)⇒(3) If In = Rn and I1 × I2 × · · · × In−1 is an n-absorbing primary ideal
of R1 × · · · ×Rn−1, then I1 × I2 × · · · × In is an n-absorbing primary ideal of
R, by Theorem 3.5. Now, assume that In is a primary ideal of Rn and for each
1 ≤ i ≤ n− 1, Ii is a primary ideal of Ri. Suppose that

(a
(1)
1 , . . . , a(1)n )(a

(2)
1 , . . . , a(2)n ) · · · (a

(n+1)
1 , . . . , a(n+1)

n )

∈ I1 × I2 × · · · × In\ψ1(I1)× · · · × ψn(In),

in which for every 1 ≤ j ≤ n+ 1, a
(j)
i ’s are in Ri, respectively. Suppose that

(a
(1)
1 , . . . , a(1)n )(a

(2)
1 , . . . , a(2)n ) · · · (a

(n)
1 , . . . , a(n)n ) /∈ I1 × I2 × · · · × In.
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Without loss of generality we may assume that a
(1)
1 · · ·a

(n)
n /∈ I1. Since I1 is

primary, we deduce that a
(n+1)
1 ∈

√
I1. On the other hand

√
Ii is a prime

ideal, for any 2 ≤ i ≤ n, then at least one of the a
(j)
i ’s is in

√
Ii, say

a
(i)
i ∈

√
Ii. Thus (a

(2)
1 , . . . , a

(2)
n ) · · · (a

(n+1)
1 , . . . , a

(n+1)
n ) ∈

√
I1 × I2 × · · · × In.

Consequently I1 × I2 × · · · × In is an n-absorbing primary ideal of R.
(3)⇒(1) is obvious. �

Theorem 3.7. Let R = R1 × · · · × Rn be a ring with identity and let ψi :
I(Ri) → I(Ri) ∪ {∅} be a function for i = 1, 2, . . . , n such that ψn(Rn) 6= Rn.

Set φ = ψ1 × ψ2 × · · · × ψn, and suppose that for every 1 ≤ i ≤ n− 1, Ii is a

proper ideal of Ri such that ψ1(I1) 6= I1 and In is an ideal of Rn. The following

conditions are equivalent:

(1) I1 × · · · × In is a φ-n-absorbing primary ideal of R that is not an n-
absorbing primary ideal of R.

(2) I1 is a ψ1-primary ideal of R1 that is not a primary ideal and for every

2 ≤ i ≤ n, Ii = ψi(Ii) is a primary ideal of Ri, respectively.

Proof. (1)⇒(2) Assume that I1 × · · · × In is a φ-n-absorbing primary ideal of
R that is not an n-absorbing primary ideal. If for some 2 ≤ i ≤ n we have
ψi(Ii) 6= Ii, then I1×· · ·× In is an n-absorbing primary ideal of R by Theorem
3.6, which contradicts our assumption. Thus for every 2 ≤ i ≤ n, ψi(Ii) = Ii
and so In 6= Rn. A proof similar to part (1)⇒(2) of Theorem 3.6 shows that
for every 2 ≤ i ≤ n, ψi(Ii) = Ii is a primary ideal of Ri. Now, we show that I1
is a ψ1-primary ideal of R1. Consider a, b ∈ R1 such that ab ∈ I1\ψ1(I1). Note
that

(1, 0, 1, . . . , 1)(1, 1, 0, 1, . . . , 1) · · · (1, . . . , 1, 0)(a, 1, . . . , 1)(b, 1, . . . , 1)

= (ab, 0, . . . , 0) ∈ (I1 × I2 × · · · × In)\(ψ1(I1)× · · · × ψn(In)).

Because Ii’s are proper, the product of (a, 1, . . . , 1)(b, 1, . . . , 1) with n − 2
of (1, 0, 1, . . . , 1), (1, 1, 0, 1, . . . , 1), . . . , (1, . . . , 1, 0) is not in

√
I1 × I2 × · · · × In.

Since I1 × I2 × · · · × In is a φ-n-absorbing primary ideal of R, we have either

(1, 0, 1, . . . , 1)(1, 1, 0, 1, . . . , 1) · · · (1, . . . , 1, 0)(a, 1, . . . , 1)

= (a, 0, . . . , 0) ∈ I1 × I2 × · · · × In,

or

(1, 0, 1, . . . , 1)(1, 1, 0, 1, . . . , 1) · · · (1, . . . , 1, 0)(b, 1, . . . , 1)

= (b, 0, . . . , 0) ∈
√
I1 × I2 × · · · × In.

So either a ∈ I1 or b ∈
√
I1. Thus I1 is a ψ1-primary ideal of R1. Assume I1 is

a primary ideal of R1, since for every 2 ≤ i ≤ n, Ii is a primary ideal of Ri, it
is easy to see that I1 × · · · × In is an n-absorbing primary ideal of R, which is
a contradiction.
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(2) ⇒ (1) It is clear that I1 × · · ·× In is a φ-n-absorbing primary ideal of R.
Since I1 is not a primary ideal of R1, there exist elements a, b ∈ R1 such that
ab ∈ ψ1(I1), but a /∈ I1 and b /∈

√
I1. Hence

(1, 0, 1, . . . , 1)(1, 1, 0, 1, . . . , 1) · · · (1, . . . , 1, 0)(a, 1, . . . , 1)(b, 1, . . . , 1)

= (ab, 0, . . . , 0) ∈ ψ1(I1)× · · · × ψn(In),

but neither

(1, 0, 1, . . . , 1)(1, 1, 0, 1, . . . , 1) · · · (1, . . . , 1, 0)(a, 1, . . . , 1)

= (a, 0, . . . , 0) ∈ I1 × · · · × In,

nor

(1, 0, 1, . . . , 1)(1, 1, 0, 1, . . . , 1) · · · (1, . . . , 1, 0)(b, 1, . . . , 1)

= (b, 0, . . . , 0) ∈
√
I1 × · · · × In.

Also the product of (a, 1, . . . , 1)(b, 1, . . . , 1) with n−2 of elements (1, 0, 1, . . . , 1),
(1, 1, 0, 1, . . . , 1), . . . , (1, . . . , 1, 0) is not in

√
I1 × · · · × In. Consequently I1 ×

· · · × In is not an n-absorbing primary ideal of R. �

Theorem 3.8. Let R = R1 × · · · × Rn+1 where Ri’s are rings with identity

and let for i = 1, 2, . . . , n+1, ψi : I(Ri) → I(Ri)∪ {∅} be a function such that

ψi(Ri) 6= Ri. Set φ = ψ1 × ψ2 × · · · × ψn+1.

(1) For every ideal I of R, φ(I) is not an n-absorbing primary ideal of R;
(2) If I is a φ-n-absorbing primary ideal of R, then either I = φ(I), or I

is an n-absorbing primary ideal of R.

Proof. Let I be an ideal of R. We know that the ideal I is of the form I1 ×
· · · × In+1 where Ii’s are ideals of Ri’s, for i = 1, . . . , n+ 1.

(1) Suppose that φ(I) is an n-absorbing primary ideal of R. Since

(0, 1, . . . , 1)(1, 0, 1, . . . , 1) · · · (1, . . . , 1, 0) = (0, . . . , 0)

∈ φ(I) = ψ1(I1)× · · · × ψn+1(In+1),

we have that either

(0, 1, . . . , 1)(1, 0, 1, . . . , 1) · · · (1, . . . , 1, 0, 1) = (0, . . . , 0, 1)

∈ ψ1(I1)× · · · × ψn+1(In+1),

or the product of (1, . . . , 1, 0) with n − 1 of (0, 1, . . . , 1), (1, 0, 1, . . . , 1), . . . ,

(1, . . . , 1, 0, 1) is in
√
φ(I). Hence, for some 1 ≤ i ≤ n + 1, 1 ∈ ψi(Ii) which

implies that ψi(Ri) = Ri, a contradiction. Consequently φ(I) is not an n-
absorbing primary ideal of R.

(2) Let I 6= φ(I). So we have I = I1 × · · · × In+1 6= ψ1(I1)× ψ2(I2)× · · · ×
ψn+1(In+1). Hence, there is an element (a1, . . . , an+1) ∈ I\(ψ1(I1)× ψ2(I2)×
· · ·×ψn+1(In+1)). Then (a1, 1, . . . , 1)(1, a2, 1, . . . , 1) · · · (1, . . . , 1, an+1)∈I\φ(I).
Since I is a φ-n-absorbing primary ideal of R, then either

(a1, 1, . . . , 1)(1, a2, 1, . . . , 1) · · · (1, . . . , 1, an, 1) = (a1, a2, . . . , an, 1) ∈ I,
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or, for some 1 ≤ i ≤ n we have

(a1, 1, . . . , 1) · · · (1, . . . , 1, ai−1, 1, . . . , 1)(1, . . . , 1, ai+1, 1, . . . , 1) · · ·

(1, . . . , 1, an+1) = (a1, . . . , ai−1, 1, ai+1, . . . , an+1) ∈
√
I.

Then Ii = Ri, for some 1 ≤ i ≤ n+1 and so I = I1×· · · Ii−1×Ri×Ii+1×· · · In+1.

If I ⊆
√
φ(I), then ψi(Ri) = Ri which is a contradiction. Therefore, by

Theorem 2.30, I must be an n-absorbing primary ideal of R. �

Theorem 3.9. Let R = R1 × · · · × Rn+1 where Ri’s are rings with identity

and let for i = 1, 2, . . . , n+1, ψi : I(Ri) → I(Ri)∪ {∅} be a function such that

ψi(Ri) 6= Ri. Set φ = ψ1×ψ2×· · ·×ψn+1. Let L = I1×· · ·× In+1 be a proper

ideal of R with L 6= φ(L). The following conditions are equivalent:

(1) L = I1 × · · · × In+1 is a φ-n-absorbing primary ideal of R;
(2) L = I1 × · · · × In+1 is an n-absorbing primary ideal of R;
(3) L = I1×· · ·× Ii−1×Ri× Ii+1 ×· · ·× In+1 for some 1 ≤ i ≤ n+1 such

that for each 1 ≤ t ≤ n+1 different from i, It is a primary ideal of Rt

or L = I1×· · ·×Iα1−1×Rα1
×Iα1+1×· · ·×Iαj−1×Rαj

×Iαj+1 · · ·×In+1

in which {α1, . . . , αj} ⊂ {1, . . . , n+ 1} and

I1 × · · · × Iα1−1 × Iα1+1 × · · · × Iαj−1 × Iαj+1 · · · × In+1

is an n-absorbing primary ideal of

R1 × · · · ×Rα1−1 ×Rα1+1 × · · · ×Rαj−1 ×Rαj+1 × · · · ×Rn+1.

Proof. (1)⇒(2) Since L is a φ-n-absorbing primary ideal of R and L 6= φ(L),
then L is an n-absorbing primary ideal of R, by Theorem 3.8.

(2)⇒(3) Suppose that L is an n-absorbing primary ideal of R, then for
some 1 ≤ i ≤ n + 1, Ii = Ri by the proof of Theorem 3.8. Assume that
L = I1 × · · ·× Ii−1 ×Ri× Ii+1 × · · ·× In+1 for 1 ≤ i ≤ n+1 such that for each
1 ≤ t ≤ n + 1 different from i, It is a proper ideal of Rt. Fix an It different
from Ii. We may assume that t > i. Let ab ∈ It for some a, b ∈ Rt. In this case

(0, 1, . . . , 1)(1, 0, 1, . . . , 1) · · · (1, . . . , 1, 0,

i−th︷︸︸︷
1 , . . . , 1)(1, . . . ,

i−th︷︸︸︷
1 , 0, 1, . . . , 1) · · ·

(1, . . . , 1, 0,

t−th︷︸︸︷
1 , . . . , 1)(1, . . . ,

t−th︷︸︸︷
1 , 0, 1, . . . , 1) · · · (1, . . . , 1, 0)(1, . . . , 1,

t−th︷︸︸︷
a , 1, . . . , 1)

(1, . . . , 1,

t−th︷︸︸︷
b , 1, . . . , 1) = (0, . . . , 0,

i−th︷︸︸︷
1 , 0, . . . , 0,

t−th︷︸︸︷
ab , 0, . . . , 0) ∈ L.

Since I1×· · ·×In+1 is n-absorbing primary and Ij ’s different from Ii are proper,
then either

(0, 1, . . . , 1)(1, 0, 1, . . . , 1) · · · (1, . . . , 1, 0,

i−th︷︸︸︷
1 , . . . , 1)(1, . . . ,

i−th︷︸︸︷
1 , 0, 1, . . . , 1) · · ·

(1, . . . , 1, 0,

t−th︷︸︸︷
1 , . . . , 1)(1, . . . ,

t−th︷︸︸︷
1 , 0, 1, . . . , 1) · · · (1, . . . , 1, 0)(1, . . . , 1,

t−th︷︸︸︷
a , 1, . . . , 1)

= (0, . . . , 0,

i−th︷︸︸︷
1 , 0, . . . , 0,

t−th︷︸︸︷
a , 0, . . . , 0) ∈ L,

or
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(0, 1, . . . , 1)(1, 0, 1, . . . , 1) · · · (1, . . . , 1, 0,

i−th︷︸︸︷
1 , . . . , 1)(1, . . . ,

i−th︷︸︸︷
1 , 0, 1, . . . , 1) · · ·

(1, . . . , 1, 0,

t−th︷︸︸︷
1 , . . . , 1)(1, . . . ,

t−th︷︸︸︷
1 , 0, 1, . . . , 1) · · · (1, . . . , 1, 0)(1, . . . , 1,

t−th︷︸︸︷
b , 1, . . . , 1)

= (0, . . . , 0,

i−th︷︸︸︷
1 , 0, . . . , 0,

t−th︷︸︸︷
b , 0, . . . , 0) ∈

√
L,

and thus either a ∈ It or b ∈
√
It. Consequently It is a primary ideal of Rt.

Now, assume that

L = I1 × · · · × Iα1−1 ×Rα1
× Iα1+1 × · · · × Iαj−1 ×Rαj

× Iαj+1 × · · · × In+1

in which {α1, . . . , αj} ⊂ {1, . . . , n + 1}. Since L is n-absorbing primary, then
I1×· · ·×Iα1−1×Iα1+1×· · ·×Iαj−1×Iαj+1 · · ·×In+1 is an n-absorbing primary
ideal of

R1 × · · · ×Rα1−1 ×Rα1+1 × · · · ×Rαj−1 ×Rαj+1 × · · · ×Rn+1

by Theorem 3.5.
(3)⇒(1) If L is in the first form, then similar to the proof of part (2)⇒(3)

of Theorem 3.6 we can verify that L is an n-absorbing primary ideal of R,
and hence L is a φ-n-absorbing primary ideal of R. For the second form apply
Theorem 3.5. �

Theorem 3.10. Let R = R1 × · · · × Rn+1 where Ri’s are rings with identity

and let for i = 1, 2, . . . , n + 1, ψi : I(Ri) → I(Ri) ∪ {∅} be a function. Set

φ = ψ1 × ψ2 × · · · × ψn+1. Then, every proper ideal of R is a φ-n-absorbing
primary ideal (φ-n-absorbing ideal) of R if and only if I = ψi(I) for every

1 ≤ i ≤ n+ 1 and every proper ideal I of Ri.

Proof. Assume that every proper ideal of R is a φ-n-absorbing primary ideal
(φ-n-absorbing ideal) of R. Fix an i and let I be a proper ideal of Ri. Assume
that I 6= ψi(I), so give an element x ∈ I\ψi(I). Set

J := I × {0} · · · × {0}.

Notice that

(1, 0, 1, . . . , 1)(1, 1, 0, 1, . . . , 1) · · · (1, . . . , 1, 0)(x, 1, . . . , 1) ∈ J\φ(J).

Since I is φ-n-absorbing primary, then either

(1, 0, 1, . . . , 1)(1, 1, 0, 1, . . . , 1) · · · (1, . . . , 1, 0) ∈ J,

or the product of (x, 1, . . . , 1) with n−1 of (1, 0, 1, . . . , 1), (1, 1, 0, 1, . . . , 1), . . . ,

(1, . . . , 1, 0) is in
√
J which implies that either 1 ∈ I or 1 ∈ {0}, a contradiction.

Consequently I = ψi(I). The converse is obvious. �

Corollary 3.11. Let n ≥ 2 be a natural number and R = R1 × · · · × Rn+1 be

a decomposable ring with identity. The following conditions are equivalent:

(1) R is a von Neumann regular ring;
(2) Every proper ideal of R is an n-almost n-absorbing primary ideal of R;
(3) Every proper ideal of R is an ω-n-absorbing primary ideal of R;
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(4) Every proper ideal of R is an n-almost n-absorbing ideal of R.

Proof. (1)⇔(2), (1)⇔(3) and (1)⇔(4): Notice that, φn(I) = I (or φω(I) = I)
if and only if I = I2. By the fact that R is von Neumann regular if and
only if I = I2 for every ideal I of R and regarding Theorem 3.10 we have the
implications. �

Corollary 3.12. Let R1, R2, . . . , Rn+1 be rings and let R = R1 × R2 × · · · ×
Rn+1. Then the following conditions are equivalent:

(1) R1, R2, . . . , Rn+1 are fields;
(2) Every proper ideal of R is a weakly n-absorbing ideal of R;
(3) Every proper ideal of R is a weakly n-absorbing primary ideal of R.

Proof. (1)⇒(2) By [11, Theorem 1.10].
(2)⇒(3) is clear.
(3)⇒(1) In Theorem 3.10 assume that φ = φ0.

�

4. The stability of φ-n-absorbing primary ideals with respect to

idealization

Let R be a commutative ring and M be an R-module. We recall from [14,
Theorem 25.1] that every ideal of R(+)M is in the form of I(+)N in which I
is an ideal of R and N is a submodule of M such that IM ⊆ N . Moreover,
if I1(+)N1 and I2(+)N2 are ideals of R(+)M , then (I1(+)N1) ∩ (I2(+)N2) =
(I1 ∩ I2)(+)(N1 ∩N2).

Theorem 4.1. Let R be a ring, I a proper ideal of R and M an R-module.

Suppose that ψ : I(R) → I(R) ∪ {∅} and φ : I(R(+)M) → I(R(+)M) ∪ {∅}
are two functions such that φ(I(+)M) = ψ(I)(+)N for some submodule N of

M with ψ(I)M ⊆ N . Then the following conditions are equivalent:

(1) I(+)M is a φ-n-absorbing primary ideal of R(+)M ;
(2) I is a ψ-n-absorbing primary ideal of R and if (a1, . . . , an+1) is a ψ-

(n + 1)-tuple, then the second component of (a1,m1) · · · (an+1,mn+1)
is in N for any elements m1, . . . ,mn+1 ∈M .

Proof. (1) ⇒ (2) Assume that I(+)M is a φ-n-absorbing primary ideal of
R(+)M . Let x1 · · ·xn+1 ∈ I\ψ(I) for some x1, . . . , xn+1 ∈ R. Therefore

(x1, 0) · · · (xn+1, 0) = (x1 · · ·xn+1, 0) ∈ I(+)M\φ(I(+)M),

because φ(I(+)M) = ψ(I)(+)N . Hence either (x1, 0) · · · (xn, 0) = (x1 · · ·xn, 0)

∈ I(+)M or (x1, 0) · · · (̂xi, 0) · · · (xn+1, 0) = (x1 · · · x̂i · · ·xn+1, 0) ∈
√
I(+)M =√

I(+)M for some 1 ≤ i ≤ n. So either x1 · · ·xn ∈ I or x1 · · · x̂i · · ·xn+1 ∈
√
I

for some 1 ≤ i ≤ n which shows that I is ψ-n-absorbing primary. For the second
statement suppose that a1 · · · an+1 ∈ ψ(I), a1 · · · an /∈ I and a1 · · · âi · · · an+1 /∈
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√
I for all 1 ≤ i ≤ n. If the second component of (a1,m1) · · · (an+1,mn+1) is

not in N , then

(a1,m1) · · · (an+1,mn+1) ∈ I(+)M\ψ(I)(+)N.

Thus either (a1,m1) · · · (an,mn) ∈ I(+)M or

(a1,m1) · · · ̂(ai,mi) · · · (an+1,mn+1) ∈
√
I(+)M

for some 1 ≤ i ≤ n. So either a1 · · · an ∈ I or a1 · · · âi · · · an+1 ∈
√
I for some

1 ≤ i ≤ n, which is a contradiction.
(2) ⇒ (1) Suppose that (a1,m1) · · · (an+1,mn+1) ∈ I(+)M\ψ(I)(+)N for

some a1, . . . , an+1 ∈ R and somem1, . . . ,mn+1 ∈M . Clearly a1 · · · an+1 ∈ I. If
a1 · · · an+1 ∈ ψ(I), then the second component of (a1,m1) · · · (an+1,mn+1) can-

not be in N . Hence either a1 · · · an ∈ I or a1 · · · âi · · · an+1 ∈
√
I for some 1 ≤

i ≤ n. If a1 · · · an+1 /∈ ψ(I), then I ψ-n-absorbing primary implies that either

a1 · · · an ∈ I or a1 · · · âi · · · an+1 ∈
√
I for some 1 ≤ i ≤ n. Therefore we have

either (a1,m1) · · · (an,mn) ∈ I(+)M or (a1,m1) · · · ̂(ai,mi) · · · (an+1,mn+1) ∈√
I(+)M for some 1 ≤ i ≤ n. Consequently I(+)M is a φ-n-absorbing primary

ideal of R(+)M . �

Corollary 4.2. Let R be a ring, I be a proper ideal of R and M be an R-
module. The following conditions are equivalent:

(1) I(+)M is an n-absorbing primary ideal of R(+)M ;
(2) I is an n-absorbing primary ideal of R.

Proof. In Theorem 4.1 set φ = φ∅, ψ = φ∅ and N =M . �

Corollary 4.3. Let R be a ring, I be a proper ideal of R and M be an R-
module. The following conditions are equivalent:

(1) I(+)M is a weakly n-absorbing primary ideal of R(+)M ;
(2) I is a weakly n-absorbing primary ideal of R and if (a1, . . . , an+1) is

an (n+ 1)-tuple-zero, then the second component of

(a1,m1) · · · (an+1,mn+1)

is zero for any elements m1, . . . ,mn+1 ∈M .

Proof. In Theorem 4.1 set φ = φ0, ψ = φ0 and N = {0}. �

Corollary 4.4. Let R be a ring, I be a proper ideal of R and M be an R-
module. Then the following conditions are equivalent:

(1) I(+)M is an n-almost n-absorbing primary ideal of R(+)M ;
(2) I is an n-almost n-absorbing primary ideal of R and if (a1, . . . , an+1)

is a φn-(n + 1)-tuple, then for any elements m1, . . . ,mn+1 ∈ M the

second component of (a1,m1) · · · (an+1,mn+1) is in In−1M .

Proof. Notice that (I(+)M)n = In(+)In−1M . In Theorem 4.1 set φ = φn,
ψ = φn and N = In−1M . �
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Corollary 4.5. Let R be a ring, I be a proper ideal of R and M be an R-
module such that IM =M . Then I(+)M is an n-almost n-absorbing primary

ideal of R(+)M if and only if I is an n-almost n-absorbing primary ideal of R.

Corollary 4.6. Let R be a ring, I be a proper ideal of R and M be an R-
module. Then I(+)M is an ω-n-absorbing primary ideal of R(+)M if and only

if I is an ω-n-absorbing primary ideal of R.

5. Strongly φ-n-absorbing primary ideals

Proposition 5.1. Let I be a proper ideal of a ring R. Then the following

conditions are equivalent:

(1) I is strongly φ-n-absorbing primary;
(2) For every ideals I1, . . . , In+1 of R such that I ⊆ I1, I1 · · · In+1 ⊆ I\φ(I)

implies that either I1 · · · In ⊆ I or I1 · · · Îi · · · In+1 ⊆
√
I for some

1 ≤ i ≤ n.

Proof. (1) ⇒ (2) is clear.
(2) ⇒ (1) Let J, I2, . . . , In+1 be ideals of R such that JI2 · · · In+1 ⊆ I and

JI2 · · · In+1 6⊆ φ(I). Then we have that

(J + I)I2 · · · In+1 = (JI2 · · · In+1) + (II2 · · · In+1) ⊆ I.

On the other hand

(J + I)I2 · · · In+1 6⊆ φ(I),

since JI2 · · · In+1 ⊆ (J+I)I2 · · · In+1. Set I1 := J+I. Then, by the hypothesis

either I1 · · · In ⊆ I or I2 · · · In+1 ⊆
√
I or there exists 2 ≤ i ≤ n such that

(J + I)I2 · · · Îi · · · In+1 ⊆
√
I. Therefore, either JI2 · · · In ⊆ I or I2 · · · In+1 ⊆√

I or there exists 2 ≤ i ≤ n such that JI2 · · · Îi · · · In+1 ⊆
√
I. So I is strongly

φ-n-absorbing primary. �

Remark 5.2. Let R be a ring. Notice that Jac(R) is a radical ideal of R.
So Jac(R) is a strongly n-absorbing ideal of R if and only if I is a strongly
n-absorbing primary ideal of R.

Given any set X , one can define a topology on X where every subset of X
is an open set. This topology is referred to as the discrete topology on X , and
X is a discrete topological space if it is equipped with its discrete topology.

We denote by Max(R) the set of all maximal ideals of R.

Theorem 5.3. Let R be a ring and Max(R) be a discrete topological space.

Then Max(R) is an infinite set if and only if Jac(R) is not strongly n-absorbing
for every natural number n.

Proof. (⇐) We can verify this implication without any assumption on Max(R),
by [3, Theorem 2.1].

(⇒) Notice that Max(R) is a discrete topological space if and only if the
Jacobson radical of R is the irredundant intersection of the maximal ideals
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of R, [21, Corollary 3.3]. Let Max(R) be an infinite set. Assume that for
some natural number n, Jac(R) is a strongly n-absorbing ideal. Choose n
distinct elements M1,M2, . . . ,Mn of Max(R). Set M := {M1,M2, . . . ,Mn},
and denote byMc the complement ofM in Max(R). Since Jac(R) =M1∩M2∩
· · · ∩Mn ∩ (

⋂
M∈Mc M), then either M1 · · ·Mi−1Mi+1 · · ·Mn(

⋂
M∈Mc M) ⊆

Jac(R) for some 1 ≤ i ≤ n, or M1M2 · · ·Mn ⊆ Jac(R). In the first case we
have M1 · · ·Mi−1Mi+1 · · ·Mn(

⋂
M∈Mc M) ⊆ Mi and so

⋂
M∈Mc M ⊆ Mi, a

contradiction. If M1M2 · · ·Mn ⊆ Jac(R), then M1M2 · · ·Mn ⊆ M for every
M ∈ Mc, and so again we reach a contradiction. Consequently Jac(R) is not
strongly n-absorbing. �

In the next theorem we investigate φ-n-absorbing primary ideals over u-rings.
Notice that any Bézout ring is a u-ring, [22, Corollary 1.2].

Theorem 5.4. Let R be a u-ring and let φ : J(R) → J(R)∪{∅} be a function.

Then the following conditions are equivalent:

(1) I is strongly φ-n-absorbing primary;
(2) I is φ-n-absorbing primary;

(3) For every elements x1, . . . , xn ∈ R with x1 · · ·xn /∈
√
I either

(I :R x1 · · ·xn) = (I :R x1 · · ·xn−1)

or (I :R x1 · · ·xn) ⊆ (
√
I :R x1 · · · x̂i · · ·xn) for some 1 ≤ i ≤ n− 1 or

(I :R x1 · · ·xn) = (φ(I) :R x1 · · ·xn);
(4) For every t ideals I1, . . . , It, 1 ≤ t ≤ n − 1, and for every elements

x1, . . . , xn−t ∈ R with x1 · · ·xn−tI1 · · · It 6⊆
√
I,

(I :R x1 · · ·xn−tI1 · · · It) = (I :R x1 · · ·xn−t−1I1 · · · It)

or

(I :R x1 · · ·xn−tI1 · · · It) ⊆ (
√
I :R x1 · · · x̂i · · ·xn−tI1 · · · It)

for some 1 ≤ i ≤ n− t− 1 or

(I :R x1 · · ·xn−tI1 · · · It) ⊆ (
√
I :R x1 · · ·xn−tI1 · · · Îj · · · It)

for some 1 ≤ j ≤ t or

(I :R x1 · · ·xn−tI1 · · · It) = (φ(I) :R x1 · · ·xn−tI1 · · · It).

(5) For every ideals I1, I2, . . . , In of R with I1I2 · · · In 6⊆ I, either there

is 1 ≤ i ≤ n such that (I :R I1 · · · In) ⊆ (
√
I :R I1 · · · Îi · · · In) or

(I :R I1 · · · In) = (φ(I) :R I1 · · · In).

Proof. (1)⇒(2) It is clear.

(2)⇒(3) Suppose that x1, . . . , xn ∈ R such that x1 · · ·xn /∈
√
I. By Theorem

2.3,

(I :R x1 · · ·xn) ⊆ [∪n−1
i=1 (

√
I :R x1 · · · x̂i · · ·xn)]

∪ (I :R x1 · · ·xn−1) ∪ (φ(I) :R x1 · · ·xn).
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Since R is a u-ring we have either (I :R x1 · · ·xn) ⊆ (
√
I :R x1 · · · x̂i · · ·xn) for

some 1 ≤ i ≤ n− 1 or (I :R x1 · · ·xn) = (I :R x1 · · ·xn−1) or (I :R x1 · · ·xn) =
(φ(I) :R x1 · · ·xn).

(3)⇒(4) We use induction on t. For t = 1, consider elements x1, . . . , xn−1 ∈

R and ideal I1 of R such that x1 · · ·xn−1I1 6⊆
√
I. Let a ∈ (I :R x1 · · ·xn−1I1).

Then I1 ⊆ (I :R ax1 · · ·xn−1). If ax1 · · ·xn−1 ∈
√
I, then a ∈ (

√
I :R

x1 · · ·xn−1). If ax1 · · ·xn−1 /∈
√
I, then by part (3), either I1 ⊆ (I :R ax1 · · ·

xn−2) or I1 ⊆ (
√
I :R ax1 · · · x̂i · · ·xn−1) for some 1 ≤ i ≤ n− 2 or I1 ⊆ (

√
I :R

x1 · · ·xn−1) or I1 ⊆ (φ(I) :R ax1 · · ·xn−1). The first case implies that a ∈ (I :R
x1 · · ·xn−2I1). The second case implies that a ∈ (

√
I :R x1 · · · x̂i · · ·xn−1I1) for

some 1 ≤ i ≤ n− 2. The third case cannot be happen, because x1 · · ·xn−1I1 6⊆√
I, and the last case implies that a ∈ (φ(I) :R x1 · · ·xn−1I1). Hence

(I :R x1 · · ·xn−1I1) ⊆ ∪n−2
i=1 (

√
I :R x1 · · · x̂i · · ·xn−1I1) ∪ (

√
I :R x1 · · ·xn−1)

∪ (I :R x1 · · ·xn−2I1) ∪ (φ(I) :R x1 · · ·xn−1I1).

Since R is a u-ring, then either (I :R x1 · · ·xn−1I1)⊆(
√
I :R x1 · · · x̂i · · ·xn−1I1)

for some 1 ≤ i ≤ n − 2, or (I :R x1 · · ·xn−1I1) ⊆ (
√
I :R x1 · · ·xn−1) or

(I :R x1 · · ·xn−1I1) = (I :R x1 · · ·xn−2I1) or (I :R x1 · · ·xn−1I1) = (φ(I) :R
x1 · · ·xn−1I1). Now suppose t > 1 and assume that for integer t− 1 the claim
holds. Let x1, . . . , xn−t be elements of R and let I1, . . . , It be ideals of R such

that x1 · · ·xn−tI1 · · · It 6⊆
√
I. Consider element a ∈ (I :R x1 · · ·xn−tI1 · · · It).

Thus It ⊆ (I :R ax1 · · ·xn−tI1 · · · It−1). If ax1 · · ·xn−tI1 · · · It−1 ⊆
√
I, then

a ∈ (
√
I :R x1 · · ·xn−tI1 · · · It−1). If ax1 · · ·xn−tI1 · · · It−1 6⊆

√
I, then by

induction hypothesis, either

(I :R ax1 · · ·xn−tI1 · · · It−1) ⊆ (
√
I :R x1 · · ·xn−tI1 · · · It−1)

or

(I :R ax1 · · ·xn−tI1 · · · It−1) ⊆ (
√
I :R ax1 · · · x̂i · · ·xn−tI1 · · · It−1)

for some 1 ≤ i ≤ n− t− 1 or

(I :R ax1 · · ·xn−tI1 · · · It−1) ⊆ (
√
I :R ax1 · · ·xn−tI1 · · · Îj · · · It−1)

for some 1 ≤ j ≤ t− 1 or

(I :R ax1 · · ·xn−tI1 · · · It−1) = (I :R ax1 · · ·xn−t−1I1 · · · It−1),

or (I :R ax1 · · ·xn−tI1 · · · It−1) = (φ(I) :R ax1 · · ·xn−tI1 · · · It−1). Since x1 · · ·

xn−tI1 · · · It 6⊆
√
I, then the first case cannot happen. Consequently, either

a ∈ (
√
I :R x1 · · · x̂i · · ·xn−tI1 · · · It)

for some 1 ≤ i ≤ n− t− 1 or a ∈ (
√
I :R x1 · · ·xn−tI1 · · · Îj · · · It) for some 1 ≤

j ≤ t−1 or a ∈ (I :R x1 · · ·xn−t−1I1 · · · It), or a ∈ (φ(I) :R x1 · · ·xn−tI1 · · · It).
Hence

(I :R x1 · · ·xn−tI1 · · · It) ⊆ [∪n−t−1
i=1 (

√
I :R x1 · · · x̂i · · ·xn−tI1 · · · It)]
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∪ [∪t
j=1(

√
I :R x1 · · ·xn−tI1 · · · Îj · · · It)]

∪ (I :R x1 · · ·xn−t−1I1 · · · It)

∪ (φ(I) :R x1 · · ·xn−tI1 · · · It).

Now, since R is u-ring we are done.
(4)⇒(5) Let I1, I2, . . . , In be ideals of R such that I1I2 · · · In 6⊆ I. Suppose

that a ∈ (I :R I1I2 · · · In). Then In ⊆ (I :R aI1I2 · · · In−1). If aI1I2 · · · In−1 ⊆√
I, then a ∈ (

√
I :R I1I2 · · · In−1). If aI1I2 · · · In−1 6⊆

√
I, then by part (4) we

have either In ⊆ (I :R I1I2 · · · In−1) or In ⊆ (
√
I :R aI1 · · · Îi · · · In−1) for some

1 ≤ i ≤ n− 1 or In ⊆ (φ(I) :R aI1I2 · · · In−1). By hypothesis, the first case is

not hold. The second case implies that a ∈ (
√
I :R I1 · · · Îi · · · In) for some 1 ≤

i ≤ n− 1. The third case implies that a ∈ (φ(I) :R I1I2 · · · In). Similarly, since

R is u-ring, there is 1 ≤ i ≤ n such that (I :R I1 · · · In) ⊆ (
√
I :R I1 · · · Îi · · · In)

or (I :R I1 · · · In) = (φ(I) :R I1 · · · In).
(5)⇒(1) This implication has an easy verification. �

Remark 5.5. Note that in Theorem 5.4, for the case n = 2 and φ = φ∅ we can
omit the condition u-ring, by the fact that if an ideal (a subgroup) is the union
of two ideals (two subgroups), then it is equal to one of them. So we conclude
that an ideal I of a ring R is 2-absorbing primary if and only if it is strongly
2-absorbing primary.

Let R be a ring with identity. We recall that if f = a0+a1X+ · · ·+atX
t is a

polynomial on the ring R, then content of f is defined as the R-ideal, generated
by the coefficients of f , i.e. c(f) = (a0, a1, . . . , at). Let T be an R-algebra and
c the function from T to the ideals of R defined by c(f) = ∩{I | I is an ideal of
R and f ∈ IT } known as the content of f . Note that the content function c is
nothing but the generalization of the content of a polynomial f ∈ R[X ]. The
R-algebra T is called a content R-algebra if the following conditions hold:

(1) For all f ∈ T , f ∈ c(f)T .
(2) (Faithful flatness ) For any r ∈ R and f ∈ T , the equation c(rf) = rc(f)

holds and c(1T ) = R.
(3) (Dedekind-Mertens content formula) For each f, g ∈ T , there exists a

natural number n such that c(f)nc(g) = c(f)n−1c(fg).

For more information on content algebras and their examples we refer to [19],
[20] and [23]. In [18] Nasehpour gave the definition of a Gaussian R-algebra as
follows: Let T be an R-algebra such that f ∈ c(f)T for all f ∈ T . T is said to
be a Gaussian R-algebra if c(fg) = c(f)c(g), for all f, g ∈ T .

Example 5.6 ([18]). Let T be a content R-algebra such that R is a Prüfer
domain. Since every nonzero finitely generated ideal of R is a cancellation
ideal of R, the Dedekind-Mertens content formula causes T to be a Gaussian
R-algebra.
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In the following theorem we use the functions φR and φT that defined just
prior to Theorem 2.25.

Theorem 5.7. Let R be a Prüfer domain, T a content R-algebra and I an

ideal of R. Then I is a φR-n-absorbing primary ideal of R if and only if IT is

a φT -n-absorbing primary ideal of T .

Proof. Assume that I is a φR-n-absorbing primary ideal of R. Let f1f2 · · · fn+1

∈ IT \φT (IT ) for some f1, f2, . . . , fn+1 ∈ T such that f1f2 · · · fn /∈ IT . Then
c(f1f2 · · · fn+1) ⊆ I. Since R is a Prüfer domain and T is a content R-algebra,
then T is a Gaussian R-algebra. Therefore

c(f1f2 · · · fn+1) = c(f1)c(f2) · · · c(fn+1) ⊆ I.

If c(f1f2 · · · fn+1) ⊆ φR(I) = φT (IT ) ∩R, then

f1f2 · · · fn+1 ∈ c(f1f2 · · · fn+1)T ⊆ (φT (IT ) ∩R)T ⊆ φT (IT ),

which is a contradiction. Hence c(f1)c(f2) · · · c(fn+1) ⊆ I and

c(f1)c(f2) · · · c(fn+1) 6⊆ φR(I).

Since R is a u-domain, I is a strongly φR-n-absorbing primary ideal of R, by
Theorem 5.4, and this implies either c(f1)c(f2) · · · c(fn) ⊆ I or

c(f1) · · · ĉ(fi) · · · c(fn+1) ⊆
√
I

for some 1 ≤ i ≤ n. In the first case we have f1f2 · · · fn ∈ c(f1f2 · · · fn)T ⊆ IT ,

which contradicts our hypothesis. In the second case we have f1 · · · f̂i · · · fn+1 ∈

(
√
I)T ⊆

√
IT for some 1 ≤ i ≤ n. Consequently IT is a φT -n-absorbing

primary ideal of T .
For the converse, note that since T is a content R-algebra, IT ∩ R = I for

every ideal I of R. Now, apply Theorem 2.25. �

The algebra of all polynomials over an arbitrary ring with an arbitrary num-
ber of indeterminate is an example of content algebras.

Corollary 5.8. Let R be a Prüfer domain and I be an ideal of R. Then I is

a φR-n-absorbing primary ideal of R if and only if I[X ] is a φR[X]-n-absorbing
primary ideal of R[X ].

As two special cases of Corollary 5.8, when φR = φT = ∅ and φR = φT = 0
we have the following result.

Corollary 5.9. Let R be a Prüfer domain and I be an ideal of R. Then I is an

n-absorbing primary ideal of R if and only if I[X ] is an n-absorbing primary

ideal of R[X ].
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