• 제목/요약/키워드: 16S-rRNA

검색결과 1,879건 처리시간 0.034초

Polyphasic Microbial Analysis of Traditional Korean Jeung-Pyun Sourdough Fermented with Makgeolli

  • Lim, Sae Bom;Tingirikari, Jagan Mohan Rao;Kwon, Ye Won;Li, Ling;Kim, Grace E.;Han, Nam Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권2호
    • /
    • pp.226-233
    • /
    • 2017
  • Jeung-pyun, a fermented rice cake, is prepared by fermenting rice sourdough using makgeolli, a traditional Korean rice wine, in the presence of yeast and lactic acid bacteria (LAB). The goal of this study was to conduct biochemical and microbial analyses of five different rice sourdoughs, each fermented with a different commercial makgeolli, using culture-dependent and culture-independent approaches. All sourdough samples fermented with different makgeolli for 6.5 h showed different profiles in pH, total titratable acidity, organic acid concentration, and microbial growth. LAB belonging to different genera were identified based on colony morphology on modified MRS and sourdough bacteria agar medium. PCR-denaturing gradient gel electrophoresis analyses of the five sourdoughs showed different bands corresponding to LAB and yeast. 16S/26S rRNA gene sequence analyses of the samples confirmed that the predominant LAB in the five fermented rice doughs was Lactobacillus plantarum, Lb. pentosus, and Lb. brevis. Various other Lactobacillus spp. and Saccharomyces cerevisiae were common in all five fermented samples. This study provides comprehensive and comparative information on the microflora involved in fermentation of rice sourdough and signifies the need to develop effective starters to enrich the quality of jeung-pyun.

한국 전통발효식품인 청국장에서 분리한 Bacillus methylotrophicus에 의한 항산화물질의 생산 (Antioxidant Production by Bacillus methylotrophicus Isolated from Chungkookjang, Korean Traditional Fermented Food)

  • 이나리;우가영;장준혁;이상미;고태훈;이희섭;황대연;손홍주
    • 한국환경과학회지
    • /
    • 제22권7호
    • /
    • pp.855-862
    • /
    • 2013
  • Although antioxidant activities of Korean traditional fermented foods were reported by many researchers, study on antioxidant activity of microorganism originated from Korean traditional fermented foods was little. Therefore, we improved condition for antioxidant production by a bacterium isolated from home-made Chungkookjang. We selected a bacterial strain, which showed the highest antioxidative activity, from Chungkookjang and then named GJ. The selected GJ strain was identified as Bacillus methylotrophicus by alignment data of 16S rRNA gene nucleotide sequences. Improved medium compositions for DPPH radical scavenging activity were 0.25% sucrose, 1% peptone, 0.01% $MgSO_4{\cdot}7H_2O$ and initial pH 6.5, respectively. Optimal culture conditions were $30^{\circ}C$, 200 rpm and 4% inoculum volume, respectively. In improved conditions, DPPH radical scavenging activity of GJ reached to 91% in a short time. The strain GJ also possessed ACE inhibition and other antioxidative activities; ACE inhibition activity (49.4%), ABTS radical scavenging activity (99.8%), metal chelating activity (67.9%), SOD-like activity (36.5%) and reducing power ($A_{700}$ = 5.982) were observed, respectively. Therefore, our results suggest that B. methylotrophicus GJ strain may be potential candidate for functional foods, cosmetic products for anti-aging and medicine for diseases caused by oxidative stress.

Lactobacillus fermentum KLB12의 열 전처리에 따른 열 스트레스 내성 증진 및 프로테옴 변화 (Improved Viability and Proteome Analysis of Lactobacillus fermentum KLB12 upon Heat Stress)

  • 김주현;박미영;김승철;윤현식;소재성
    • KSBB Journal
    • /
    • 제18권4호
    • /
    • pp.294-300
    • /
    • 2003
  • 본 연구에서는 L. fermentum KLB12을 열 전처리 함으로서 제제화 과정 동안 거치게 되는 열 스트레스에 대한 내성이 증진됨을 확인하고, 최적의 열 전처리 조건을 수행하였다. 또한 열 전처리 뿐만 아니라, 저온과 열 전처리 조건에도 열 스트레스에 대한 간섭 효과를 확인하였다. 그리고 내성 증진에 신규 단백질 합성이 필요함을 확인하였으며 나아가, 2-D electrophoresis를 통하여 7개의 신규 단백질을 확인하였다. 따라서 이 균주를 제제화하기 위한 방법으로 열 전처리를 이용할 경우 생균력 유지에 큰 효과를 얻을 수 있다고 사료된다.

Omega-7 producing alkaliphilic diatom Fistulifera sp. (Bacillariophyceae) from Lake Okeechobee, Florida

  • Berthold, David Erwin;Rosa, Nina de la;Engene, Niclas;Jayachandran, Krish;Gantar, Miroslav;Laughinghouse, Haywood Dail IV;Shetty, Kateel G.
    • ALGAE
    • /
    • 제35권1호
    • /
    • pp.91-106
    • /
    • 2020
  • Incorporating renewable fuel into practice, especially from algae, is a promising approach in reducing fossil fuel dependency. Algae are an exceptional feedstock since they produce abundant biomass and oils in short timeframes. Algae also produce high-valued lipid products suitable for human nutrition and supplement. Achieving goals of producing algae fuels and high-valued lipids at competitive prices involves further improvement of technology, especially better control over cultivation. Manipulating microalgae cultivation conditions to prevent contamination is essential in addition to promoting optimal growth and lipid yields. Contamination of algal cultures is a major impediment to algae cultivation that can however be mitigated by choosing extremophile microalgae. This work describes the isolation of alkali-tolerant / alkaliphilic microalgae native to South Florida with ideal characteristics for cultivation. For that purpose, water samples from Lake Okeechobee were inoculated into Zarrouk's medium (pH 9-12) and incubated for 35 days. Selection resulted in isolation of three strains that were screened for biomass and lipid accumulation. Two alkali-tolerant algae Chloroidium sp. 154-1 and Chlorella sp. 154-2 were poor lipid accumulators. One of the isolates, the diatom Fistulifera sp. 154-3, was identified as a lipid accumulating, alkaliphilic organism capable of producing 0.233 g L-1 d-1 dry biomass and a lipid content of 20-30% dry weight. Lipid analysis indicated the most abundant fatty acid within Fistulifera sp. was palmitoleic acid (52%), or omega-7, followed by palmitic acid (17%), and then eicosapentanoic acid (15%). 18S rRNA phylogenetic analysis formed a well-supported clade with Fistulifera species.

바이칼 호수에 서식하는 담수 스폰지 내 공생세균의 분리 (Isolation of Bacteria Associated with Fresh Sponges in Lake Baikal)

  • 조안나;김주영;안태석
    • 생태와환경
    • /
    • 제47권spc호
    • /
    • pp.39-47
    • /
    • 2014
  • 바이칼호에 서식하는 2종의 스폰지 체내 및 주변 물로부터 92개의 저온성 균주를 분리하고 각 균주들의 기질 분해능을 조사하였다. 그 결과 섬유소와 지방에 대한 분해 활성도를 갖는 균주는 38.0, 34.8%로 비교적 적었으나 전분과 단백질 분해 활성도를 갖는 균주는 78.3, 57.6%로 높은 비율로 나타났다. 분리한 세균을 염기서열의 유사도에 따라 분류하기 위하여 Genomic Fingerprinting을 실시한 후 31개 균주를 선별하여 동정한 결과, Baikalospongia sp.에서 분리한 13균주는 모두 Pseudomonas속으로 확인된 반면, Lubomirskia sp.에서 분리한 14균주는 Pseudomonas ssp., Buttiauxella agrestis, Pseudomonas fluorescens, Yersinia ruckeri, Bacillus ssp., Paenibacillus ssp., Bacillus thuringiensis, Bacillus simplex, Brevibacterium ssp., Acinetobacter lwoffii로 다양하게 동정되었다. 그러나 총 31개 균주 중 18개가 Pseudomonas속으로 동정된 것은 타감작용에 의한 다른 세균 성장의 방해 때문으로 평가되며, 이러한 일반적인 배양 방법의 한계점을 극복하기 위해서는 스폰지의 서식처와 세균의 검출 방법에 대하여 보다 다양한 심층적인 연구가 이루어져야 할 것으로 생각된다.

Probiotic Characteristics of Lactobacillus brevis KT38-3 Isolated from an Artisanal Tulum Cheese

  • Hacioglu, Seda;Kunduhoglu, Buket
    • 한국축산식품학회지
    • /
    • 제41권6호
    • /
    • pp.967-982
    • /
    • 2021
  • Probiotics are living microorganisms that, when administered in adequate amounts, provide a health benefit to the host and are considered safe. Most probiotic strains that are beneficial to human health are included in the "Lactic acid bacteria" (LAB) group. The positive effects of probiotic bacteria on the host's health are species-specific and even strain-specific. Therefore, evaluating the probiotic potential of both wild and novel strains is essential. In this study, the probiotic characteristics of Lactobacillus brevis KT38-3 were determined. The strain identification was achieved by 16S rRNA sequencing. API-ZYM test kits were used to determine the enzymatic capacity of the strain. L. brevis KT38-3 was able to survive in conditions with a broad pH range (pH 2-7), range of bile salts (0.3%-1%) and conditions that simulated gastric juice and intestinal juice. The percentage of autoaggregation (59.4%), coaggregation with E. coli O157:H7 (37.4%) and hydrophobicity were determined to be 51.1%, 47.4%, and 52.7%, respectively. L. brevis KT38-3 produced β-galactosidase enzymes and was able ferment lactose. In addition, this strain was capable of producing antimicrobial peptides against the bacteria tested, including methicillin and/or vancomycin-resistant bacteria. The cell-free supernatants of the strain had high antioxidant activities (DPPH: 54.9% and ABTS: 48.7%). Therefore, considering these many essential in vitro probiotic properties, L. brevis KT38-3 has the potential to be used as a probiotic supplement. Supporting these findings with in vivo experiments to evaluate the potential health benefits will be the subject of our future work.

버섯 세균성회색무늬병균 (Pseudomonas agarici) 에 대한 항균활성을 가지는 Bacillus safensis HC42 (Antagonistic Effect of Bacillus safensis HC42 on Brown Blotch Mushroom Disease Caused by Pseudomonas agarici)

  • 이찬중;이은지;박혜성;공원식
    • 한국버섯학회지
    • /
    • 제17권1호
    • /
    • pp.19-23
    • /
    • 2019
  • Pseudomonas agarici에 의해 발생하는 세균성회색무늬병은 양송이버섯 재배에서 문제가 되는 대표적인 병해이다. 본 연구에서는 세균성회색무늬병의 생물학적 방제법에 이용할 수 있는 길항미생물의 항균활성과 선발된 길항미생물에 대해 폿트 수준의 생물검정 실험을 실시하였다. 재배중인 양송이버섯 배지에서 세균성회색무늬병 병원균을 강하게 억제하는 길항세균 HC42를 선발하였으며, 생리 생화학적 실험과 유전적 실험결과 HC42균주는 B. safensis로 동정되었다. B. safensis HC42를 양송이에 처리한 결과 66%의 방제효과를 보였다. 따라서 B. safensis HC42가 양송이버섯 세균성회색무늬병 방제를 위해 합성농약을 대체할 수 있는 친환경 방제제가 될 수 있을 것으로 생각된다.

Effect of Bacillus mesonae H20-5 Treatment on Rhizospheric Bacterial Community of Tomato Plants under Salinity Stress

  • Lee, Shin Ae;Kim, Hyeon Su;Sang, Mee Kyung;Song, Jaekyeong;Weon, Hang-Yeon
    • The Plant Pathology Journal
    • /
    • 제37권6호
    • /
    • pp.662-672
    • /
    • 2021
  • Plant growth-promoting bacteria improve plant growth under abiotic stress conditions. However, their effects on microbial succession in the rhizosphere are poorly understood. In this study, the inoculants of Bacillus mesonae strain H20-5 were administered to tomato plants grown in soils with different salinity levels (EC of 2, 4, and 6 dS/m). The bacterial communities in the bulk and rhizosphere soils were examined 14 days after H20-5 treatment using Illumina MiSeq sequencing of the bacterial 16S rRNA gene. Although the abundance of H20-5 rapidly decreased in the bulk and rhizosphere soils, a shift in the bacterial community was observed following H20-5 treatment. The variation in bacterial communities due to H20-5 treatment was higher in the rhizosphere than in the bulk soils. Additionally, the bacterial species richness and diversity were greater in the H20-5 treated rhizosphere than in the control. The composition and structure of the bacterial communities varied with soil salinity levels, and those in the H20-5 treated rhizosphere soil were clustered. The members of Actinobacteria genera, including Kineosporia, Virgisporangium, Actinoplanes, Gaiella, Blastococcus, and Solirubrobacter, were enriched in the H20-5 treated rhizosphere soils. The microbial co-occurrence network of the bacterial community in the H20-5 treated rhizosphere soils had more modules and keystone taxa compared to the control. These findings revealed that the strain H20-5 induced systemic tolerance in tomato plants and influenced the diversity, composition, structure, and network of bacterial communities. The bacterial community in the H20-5 treated rhizosphere soils also appeared to be relatively stable to soil salinity changes.

First Report of Pectobacterium brasiliense Causing Soft Rot on Graft Cactus in Korea

  • Park, Kyoung-Taek;Hong, Soo-Min;Back, Chang-Gi;Kim, San Yeong;Lee, Seung-Yeol;Kang, In-Kyu;Ten, Leonid N.;Jung, Hee-Young
    • 식물병연구
    • /
    • 제28권3호
    • /
    • pp.172-178
    • /
    • 2022
  • The graft cactus (Gymnocalycium mihanovichii) continues to be exported to more than 20 countries worldwide. In April 2021, typical bacterial symptoms of soft rot were observed in the graft cactus (cv. Yeonbit) in Goyang, Gyeonggi-do, Korea, resulting in economic losses in cactus production. The stems turned dark brown and the flowers were covered with black rot. The bacterial strain designated as KNUB-01-21 was isolated from infected stems and flowers. The results of the morphological and biochemical tests of the isolate were similar to those of Pectobacterium brasiliense. For molecular analysis, the 16S rRNA region and three housekeeping genes (dnaX, leuS, and recA) of the strain KNUB-01-21 were amplified. Based on the results of the molecular analysis and morphological and biochemical tests, KNUB-01-21 was identified as P. brasiliense. The pathogenicity of KNUB-01-21 on graft cactus was confirmed by an inoculation test. Artificial inoculation using P. brasiliense KNUB-01-21 produced soft rot symptoms on the grafted cactus, and the same bacterium was re-isolated and re-identified. This is the first report of P. brasiliense causing soft rot in graft cactus in Korea.

Molecular methods for diagnosis of microbial pathogens in muga silkworm, Antheraea assamensis Helfer (Lepidoptera: Saturniidae)

  • Gangavarapu Subrahmanyam;Kangayam M. Ponnuvel;Kallare P Arunkumar;Kamidi Rahul;S. Manthira Moorthy;Vankadara Sivaprasad
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제47권1호
    • /
    • pp.1-11
    • /
    • 2023
  • The Indian golden muga silkworm, Antheraea assamensis Helfer is an economically important wild silkworm endemic to Northeastern part of India. In recent years, climate change has posed a threat to muga silk production due to the requirement that larvae be reared outdoors. Since the muga silkworm larvae are exposed to the vagaries of nature, the changing climate has increased the incidence of microbial diseases in the rearing fields. Accurate diagnosis of the disease causing pathogens and its associated epidemiology are prerequisites to manage the diseases in the rearing field. Although conventional microbial culturing methods are widely used to identify pathogenic bacteria, they would not provide meaningful information on a wide variety of silkworm pathogens. The information on use of molecular diagnostic tools in detection of microbial pathogens of wild silk moths is very limited. A wide range of molecular and immunodiagnostic techniques including denaturing gradient gel electrophoresis (DGGE), random amplified polymorphism (RAPD), 16S rRNA/ITSA gene sequencing, multiplex polymerase chain reaction (M-PCR), fluorescence in situ hybridization (FISH), immunofluorescence, and repetitive-element PCR (Rep-PCR), have been used for detecting and characterizing the pathogens of insects with economic significance. Nevertheless, the application of these molecular tools for detecting and typing entomopathogens in surveillance studies of muga silkworm rearing is very limited. Here, we discuss the possible application of these molecular techniques, their advantages and major limitations. These methods show promise in better management of diseases in muga ecosystem.