DOI QR코드

DOI QR Code

Antagonistic Effect of Bacillus safensis HC42 on Brown Blotch Mushroom Disease Caused by Pseudomonas agarici

버섯 세균성회색무늬병균 (Pseudomonas agarici) 에 대한 항균활성을 가지는 Bacillus safensis HC42

  • 이찬중 (농촌진흥청 국립원예특작과학원 버섯과) ;
  • 이은지 (농촌진흥청 국립원예특작과학원 버섯과) ;
  • 박혜성 (농촌진흥청 국립원예특작과학원 버섯과) ;
  • 공원식 (농촌진흥청 국립원예특작과학원 버섯과)
  • Received : 2019.02.19
  • Accepted : 2019.03.20
  • Published : 2019.03.31

Abstract

A gram-positive bacterium was isolated from the spent substrate of Agaricus bisporus that showed a marked antagonistic activity against Pseudomonas agarici. It was identified as Bacillus safensis HC42 based on its cultural, biochemical, and physiological characteristics, and 16S rRNA sequence. B. safensis HC42 was saprophytic, but not parasitic or pathogenic, in cultivated mushrooms and showed strong inhibition of P. agarici in vitro. Moreover, it showed a control efficacy of 66 % against browning disease caused by P. agarici in Agaricus bisporus. Therefore, B. safensis HC42 may be useful in the future for the development of a biocontrol system.

Pseudomonas agarici에 의해 발생하는 세균성회색무늬병은 양송이버섯 재배에서 문제가 되는 대표적인 병해이다. 본 연구에서는 세균성회색무늬병의 생물학적 방제법에 이용할 수 있는 길항미생물의 항균활성과 선발된 길항미생물에 대해 폿트 수준의 생물검정 실험을 실시하였다. 재배중인 양송이버섯 배지에서 세균성회색무늬병 병원균을 강하게 억제하는 길항세균 HC42를 선발하였으며, 생리 생화학적 실험과 유전적 실험결과 HC42균주는 B. safensis로 동정되었다. B. safensis HC42를 양송이에 처리한 결과 66%의 방제효과를 보였다. 따라서 B. safensis HC42가 양송이버섯 세균성회색무늬병 방제를 위해 합성농약을 대체할 수 있는 친환경 방제제가 될 수 있을 것으로 생각된다.

Keywords

BSHGBD_2019_v17n1_19_f0001.png 이미지

Fig. 1. Antimicrobial activity of B. safensis HC42 against Pseudomonas agarici.

BSHGBD_2019_v17n1_19_f0002.png 이미지

Fig. 2. Phylogenetic tree of HC42 based on 16S rRNA sequence similarity. Branching values determined using 1,000 bootstraps.

BSHGBD_2019_v17n1_19_f0003.png 이미지

Fig. 3. Effect of spraying of HC42 suspension on browning disease development in Agaricus bisporus. Left, control treatment; Right, HC42 treatment.

Table 1. Biochemical characteristics of B. safensis HC42

BSHGBD_2019_v17n1_19_t0001.png 이미지

Table 2. Control efficacy of browning disease on Agaricus bisporus by HC42 strain

BSHGBD_2019_v17n1_19_t0002.png 이미지

References

  1. Bessette AE, Kerrigan RW, Jordan DC. 1985. Yellow blotch of Pleurotus ostreatus. Appl Environ Microbiol 50: 1535-1537. https://doi.org/10.1128/AEM.50.6.1535-1537.1985
  2. Cutri SS, Macauley BJ, Roberts WP. 1984. Characteristics of pathogenic non-fluorescent (smooth) and nonpathogenic fluorescent (rough) forms of Pseudomonas tolaasii and Pseudomonas 'gingeri'. J Appl Bacteriol 57:291-298. https://doi.org/10.1111/j.1365-2672.1984.tb01393.x
  3. Fermor TR. 1986. Bacterial diseases of edible mushrooms and their control. In: Proceedings of International Symposium on Scientific and Technical Aspects of Cultivating Edible Fungi. Pennsylvania State University, University Park, PA, USA, 361-370.
  4. Geels FP, Hesen LPW, Van Griensven LJLD. 1994. Brown discoloration of mushrooms caused by Pseudomonas agarici. J Phytopathol 140:249-59. https://doi.org/10.1111/j.1439-0434.1994.tb04814.x
  5. Gill WM. 1995. Bzcterial disease of Agaricus mushrooms. Report. Tottori Mycological Institute. 33:34-35.
  6. Jukes TH, Cantor CR. 1969. Evolution of protein molecules, pp.21-132. In: H. N. Munro(de.), Mammalian Protein Metabolism. Academic Press, N. Y.
  7. Kim IG, Whang KS. 2002. The observation and a quantitative evaluation of viable but non-culturable bacteria in potable groundwater using epifluorescence microscopy. The Kor J Microbiol 38:180-185.
  8. Lee HI, Cha JS. 1998. Cloning of a DNA Fragment Specific to Pseudomonas tolaasii Causing Bacterial Brown Blotch Disease of Oyster Mushroom (Pleurotus ostreatus). Kor J Plant Pathol 14:177-183.
  9. Lee CJ, Moon JW, Cheong JC, Kong WS. 2016. Antagonistic effects of the bacterium Alcaligenes sp. HC12 on browning disease caused by Pseudomonas agarici. Kor J Mycol 44: 171-175. https://doi.org/10.4489/KJM.2016.44.3.171
  10. Lee CJ, Yoo YM, Han JY, Jhune CS, Cheong JC, Moon JW, Suh JS, Han HS, Cha JS. 2013. Isolation of the bacterium Pseudomonas sp. HC1 effective in inactivation of tolaasin produced by Pseudomonas tolaasii. Kor J Mycol 41: 248-254. https://doi.org/10.4489/KJM.2013.41.4.248
  11. Lee CJ, Yoo YM, Han JY, Jhune CS, Cheong JC, Moon JW, Suh JS, Han HS, Cha JS. 2014. Isolation of the bacterium Pseudomonas azotoformans HC5 effective in antagonistic of brown blotch disease caused by Pseudomonas tolaasii. Kor J Mycol 42:219-224. https://doi.org/10.4489/KJM.2014.42.3.219
  12. Nair NG, Fahy PC. 1972. Bacteria antagonistic to Pseudomonas tolaasii and their control of brown blotch of the cultivated mushroom Agaricus bisporus. J Appl Bacteriol 35: 439-442. https://doi.org/10.1111/j.1365-2672.1972.tb03720.x
  13. Nutkins JC, Mortishire-Smith RJ, Packman LC, Brodey CL, Rainey PB, Johnstone K, Williams DH. 1991. Structure determination of tolaasin, an extracellular lipodepsipeptide produced by the mushroom pathogen Pseudomonas tolaasii Paine. J Am Chem Soc 113:2621-2627. https://doi.org/10.1021/ja00007a040
  14. Palleroni NJ. Genus. Pseudomonas. 1984. In: Bergey's manual of systematic bacteriology. Vol. I, Ed. by N. R. Krieg and J. G. Hotr, P. 141-219. Williams and Wilkins, Baltmore.
  15. Park BS, Cho NC, Chun UH. 1992. Identification of Pseudomonas fluorescens antagonistic to Pseudomonas tolaasii and its cultivation. Kor J Biotechnol Bioeng 7: 296-301.
  16. Paine SG. 1919. Studies in bacteriosis II. A brown blotch disease of cultivated mushrooms. Ann Appl biol 5:206-219. https://doi.org/10.1111/j.1744-7348.1919.tb05291.x
  17. Scherwinski K, Grosch R, Berg G. 2008. Effect of bacterial antagonists on lettuce: active biocontrol of Rhizoctonia solani and negligible, short-term effects on nontarget microorganisms. FEMS Microbiol Ecol 64: 106-116. https://doi.org/10.1111/j.1574-6941.2007.00421.x
  18. Stainer RY, Palleroni NJ, Doudoroff M. 1966. The aerobic pseudomonads: a taxonomic study. J Gener Microbiol 43:159-271. https://doi.org/10.1099/00221287-43-2-159
  19. Saitou N, Nei M, 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biol Evol 4:406-425.
  20. Thompson JD, Higgins DG, Gibson TJ. 1994. Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighing position-specific gap penalties and weight matrix choice. Nucleic Acids Res 34-637.
  21. Tolaas AG. 1915. A Bacterial disease of cultivated mushrooms. Phytopathology 5:51-54
  22. Wells JM, Sapers GM, Fett WF, Butterfield JE, Jones JB, Bouzar H, Miller FC. 1996. Postharvest discolorization of the cultivated mushroom Agaricus bisporus caused by Pseudomonas tolaasii, P. 'reactans', and P. 'gingeri'. Phytopathology 86:1098-1104. https://doi.org/10.1094/Phyto-86-1098
  23. Wong WC, Fletche, JT, Unsworth BA, Preece TF. 1982. A note on ginger blotch, a new bacterial disease of the cultivated mushroom, Agaricus bisporus. J Appl Bacteriol 52:43-48. https://doi.org/10.1111/j.1365-2672.1982.tb04371.x
  24. Young JM. 1970. Drippy gill: a bacterial disease of cultivated mushrooms caused by Pseudomonas agarici n. sp. N Z J Agr Res 13:977-990. https://doi.org/10.1080/00288233.1970.10430530