Improved Viability and Proteome Analysis of Lactobacillus fermentum KLB12 upon Heat Stress

Lactobacillus fermentum KLB12의 열 전처리에 따른 열 스트레스 내성 증진 및 프로테옴 변화

  • 김주현 (인하대학교 생물공학과) ;
  • 박미영 (인하대학교 생물공학과) ;
  • 김승철 (이화여자대학교 의과대학 산부인과학교실) ;
  • 윤현식 (인하대학교 생물공학과) ;
  • 소재성 (인하대학교 생물공학과)
  • Published : 2003.08.01

Abstract

In the previous study, we have isolated several vaginal lactobacilli from Korean woman and selected one of them (KLB12) for further study, which was indentified as Lactobacillus fermentum by sequence analysis of 16S rRNA gene. Formulated L. fermentum KLB12 can be used for ecological treatment of bacterial vaginosis. For pharmaceutical formulation, the spray-drying process is required where stress such as high temperature is routinely applied. In this study, we found that heat stress at 60$^{\circ}C$ for 20∼30min reduced the viable cell population of KLB12 by 10$\sub$6/~10$\sub$9/. However, adaptation of KLB12 cells at 52$^{\circ}C$ made them more thermotolerant upon exposure to 60$^{\circ}C$. The level of thermal protection in RSM (reconstituted skim milk) by adaptation in acid (pH 5), cold (4$^{\circ}C$), ethanol (3%), NaCI (0.3M) was also examined. Although not as efficient as the homologous stress, adaptations in both cold and NaCI gave considerable cross protection against heat stress. When chloramphenicol was added during heat adaptation, adaptation effect was abolished. This suggests that de novo protein synthesis is necessary during the adaptation process. Important changes in proteome during heat adaptation was examined with two-dimensional gel electrophoresis.

본 연구에서는 L. fermentum KLB12을 열 전처리 함으로서 제제화 과정 동안 거치게 되는 열 스트레스에 대한 내성이 증진됨을 확인하고, 최적의 열 전처리 조건을 수행하였다. 또한 열 전처리 뿐만 아니라, 저온과 열 전처리 조건에도 열 스트레스에 대한 간섭 효과를 확인하였다. 그리고 내성 증진에 신규 단백질 합성이 필요함을 확인하였으며 나아가, 2-D electrophoresis를 통하여 7개의 신규 단백질을 확인하였다. 따라서 이 균주를 제제화하기 위한 방법으로 열 전처리를 이용할 경우 생균력 유지에 큰 효과를 얻을 수 있다고 사료된다.

Keywords

References

  1. J. Food Sci. v.60 Spary drying of lactococcus lacits ssp. lactis C2 and cellular injury Fu.W.Y;M.R.Etzel https://doi.org/10.1111/j.1365-2621.1995.tb05636.x
  2. Int. J. Food Microbiol. Survival of bifidobacteria after spary-drying Lian,W.C.;H.C.Hsiao.C.C.Chou
  3. Int. Dariy J. v.11 Environmental adaptation of probiotic lactobacilli towards improvement of performance during spray drying Desmond,C.;C.Stanton;G.F.Fitzgerald;K.Collins;R.P.Ross https://doi.org/10.1016/S0958-6946(01)00121-2
  4. Appl. Environ. Microbiol. v.6 Comparative survival rates of human-derived probiotic lactobacillus paracasei and L. salivarius strains during heat treatment and spray drying Gardiner,G.E.;E.O'Sullivan;J.Kelly;M.A.E.Auty;G.F.Fitzgerald;J.K.Collins;R.P.Ross;C.Stanton
  5. Cult. Dairy Prod. J. v.21 Nutritional and therapeutic benefits of a blended-spraydried acidophilus preparation Prajapati,J.B.;R.K.Shah;J.M.Dave
  6. J. Ind. Microbiol. Biotechnol. v.23 Survival of lactobacillus helveticus entrapped in Ca-alginate in relation to water content, storage and rehydration Selmer-Olsen,E.;T.Sorhaung;S.E.Birkeland;R.Pehrson https://doi.org/10.1038/sj.jim.2900693
  7. Biotechnol.Lett. v.20 Adaptive acid tolerance response in Lactobacillus acidophilus Lorca,G.L.;R.R.Raya;M.P.Taranto;G.F. de Valdez https://doi.org/10.1023/A:1005369617313
  8. Cryobiol. v.39 The effect of suboptimal growth temperature and growth phase on resistance of lactobacillus acidophilus to environmental stress Graciela,L.L;Graciel Font de Valdz https://doi.org/10.1006/cryo.1999.2193
  9. Kor. J. Biotechnol Bioeng. v.16 Effect of cold adaptation on the improved viability of lactobacillus crispatus KLB46 Kim,J.H.;S.Y.Lee;C.E.Chang,S.C.Kim;H.S.Yun;J.S.So
  10. J. Bacteriol. v.182 A two-dimensional protein gel electrophoresis study of the heat stress response of bacillus subtilis cells during sporulation Movahedi,S.;W.Waites https://doi.org/10.1128/JB.182.17.4758-4763.2000
  11. Infect. Immun. v.66 Characterization of thermal stress response of campylobacter jejumi Konkel,M.E.;B.J.Kim;J.D.Klena;C.R.Young;R.Ziprin
  12. J. Bacteriol. v.183 Heat-shock-induced proteins from myxococcus xanthus Otani,M.;J.Tabata;T.Ueki;K.Sano;S.Inouye https://doi.org/10.1128/JB.183.21.6282-6287.2001
  13. Appl. Environ. Microbiol. v.63 Effects of several factors on the heat-shock-induced thermotolerance of listeria monocytoenes Pagan,R.;S.Condon;F.J.Sala
  14. Appl. Environ. Microbiol. v.63 Induction of heat shock proteins DnaK, GroEL, and GroES by salt stress in lactococcus lactis Kilstrup,M.;S.Jacobsen;K.Hammer;F.K.Vogensen
  15. Appl. Environ. Microbiol. v.57 Characterization of the heat shock response in lactococcus lactis subsp lactis Whitaker,R.D.;C.A.Batt
  16. Electrophoresis v.21 Identification of stress-inducible proteins in Lactobacillus delbrueckii subsp. bulgaricus Eun Mong L.;S.D.Ehrlich;E.Maguin https://doi.org/10.1002/1522-2683(20000701)21:12<2557::AID-ELPS2557>3.0.CO;2-B
  17. Appl. Environ. Microbiol. v.65 Changes in membrane fatty acid composition of pediococcus sp. strain NRRL B-2354 in response to growth conditions and its effect on thermal resistance Annous,B.A.;F.K.Michael;J.K.Michael
  18. Appl. Environ. Microbiol. v.61 Cellular fatty acid profiles of lactobacillus and lactococcus strains in relation to the oelic acid content of the cultivation medium Johnsson,T.;P.Nikkila;L.Toivonen;H.Rosenqvist;S.Laakso
  19. Appl. Environ. Microbiol. v.61 Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying Samuel,B.L.;E.Israeli;B.Lighthart;J.H.Crowe;L.M.Crowe
  20. Appl. Environ. Microbiol. v.63 Adaptation to sublethal environmental stresses protects Listeria monocytogenes against lethal preservation factors Lou,Y.;A.E.Yousef