Browse > Article
http://dx.doi.org/10.5423/PPJ.FT.10.2021.0156

Effect of Bacillus mesonae H20-5 Treatment on Rhizospheric Bacterial Community of Tomato Plants under Salinity Stress  

Lee, Shin Ae (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration)
Kim, Hyeon Su (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration)
Sang, Mee Kyung (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration)
Song, Jaekyeong (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration)
Weon, Hang-Yeon (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration)
Publication Information
The Plant Pathology Journal / v.37, no.6, 2021 , pp. 662-672 More about this Journal
Abstract
Plant growth-promoting bacteria improve plant growth under abiotic stress conditions. However, their effects on microbial succession in the rhizosphere are poorly understood. In this study, the inoculants of Bacillus mesonae strain H20-5 were administered to tomato plants grown in soils with different salinity levels (EC of 2, 4, and 6 dS/m). The bacterial communities in the bulk and rhizosphere soils were examined 14 days after H20-5 treatment using Illumina MiSeq sequencing of the bacterial 16S rRNA gene. Although the abundance of H20-5 rapidly decreased in the bulk and rhizosphere soils, a shift in the bacterial community was observed following H20-5 treatment. The variation in bacterial communities due to H20-5 treatment was higher in the rhizosphere than in the bulk soils. Additionally, the bacterial species richness and diversity were greater in the H20-5 treated rhizosphere than in the control. The composition and structure of the bacterial communities varied with soil salinity levels, and those in the H20-5 treated rhizosphere soil were clustered. The members of Actinobacteria genera, including Kineosporia, Virgisporangium, Actinoplanes, Gaiella, Blastococcus, and Solirubrobacter, were enriched in the H20-5 treated rhizosphere soils. The microbial co-occurrence network of the bacterial community in the H20-5 treated rhizosphere soils had more modules and keystone taxa compared to the control. These findings revealed that the strain H20-5 induced systemic tolerance in tomato plants and influenced the diversity, composition, structure, and network of bacterial communities. The bacterial community in the H20-5 treated rhizosphere soils also appeared to be relatively stable to soil salinity changes.
Keywords
Bacillus mesonae; bacterial community; rhizosphere; salinity; tomato;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Edgar, R. C. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10:996-998.   DOI
2 Edwards, J., Johnson, C., Santos-Medellin, C., Lurie, E., Podishetty, N. K., Bhatnagar, S., Eisen, J. A. and Sundaresan, V. 2015. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc. Natl. Acad. Sci. U. S. A. 112:E911-E920.
3 Edwards, J. A., Santos-Medellin, C. M., Liechty, Z. S., Nguyen, B., Lurie, E., Eason, S., Phillips, G. and Sundaresan, V. 2018. Compositional shifts in root-associated bacterial and archaeal microbiota track the plant life cycle in field-grown rice. PLoS Biol. 16:e2003862.   DOI
4 Gadhave, K. R., Devlin, P. F., Ebertz, A., Ross, A. and Gange, A. C. 2018. Soil inoculation with Bacillus spp. modifies root endophytic bacterial diversity, evenness, and community composition in a context-specific manner. Microb. Ecol. 76:741-750.   DOI
5 Wang, Q., Garrity, G. M., Tiedje, J. M. and Cole, J. R. 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73:5261-5267.   DOI
6 Munns, R. 2005. Genes and salt tolerance: bringing them together. New Phytol. 167:645-663.   DOI
7 Toju, H., Peay, K. G., Yamamichi, M., Narisawa, K., Hiruma, K., Naito, K., Fukuda, S., Ushio, M., Nakaoka, S., Onoda, Y., Yoshida, K., Schlaeppi, K., Bai, Y., Sugiura, R., Ichihashi, Y., Minamisawa, K. and Kiers, E. T. 2018. Core microbiomes for sustainable agroecosystems. Nat. Plants 4:247-257.   DOI
8 Wang, L., Lu, X., Yuan, H., Wang, B. and Shen, Q. 2015. Application of bio-organic fertilizer to control tomato fusarium wilting by manipulating soil microbial communities and development. Commun. Soil Sci. Plant Anal. 46:2311-2322.   DOI
9 Clarke, K. R. 1993. Nonparametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18:117-143.   DOI
10 Backer, R., Rokem, J. S., Ilangumaran, G., Lamont, J., Praslickova, D., Ricci, E., Subramanian, S. and Smith, D. L. 2018. Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front. Plant Sci. 9:1473.   DOI
11 Zolla, G., Badri, D. V., Bakker, M. G., Manter, D. K. and Vivanco, J. M. 2013. Soil microbiomes vary in their ability to confer drought tolerance to Arabidopsis. Appl. Soil Ecol. 68:1-9.   DOI
12 Antoun, H., Beauchamp, C. J., Goussard, N., Chabot, R. and Lalande, R. 1998. Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on nonlegumes: effect on radishes (Raphanus sativus L.). Plant Soil 204:57-67.   DOI
13 Bulgarelli, D., Schlaeppi, K., Spaepen, S., Ver Loren van Themaat, E. and Schulze-Lefert, P. 2013. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 64:807-838.   DOI
14 Chaparro, J. M., Badri, D. V. and Vivanco, J. M. 2014. Rhizosphere microbiome assemblage is affected by plant development. ISME J. 8:790-803.   DOI
15 Zhang, L.-N., Wang, D.-C., Hu, Q., Dai, X.-Q., Xie, Y.-S., Li, Q., Liu, H.-M. and Guo, J.-H. 2019a. Consortium of plant growth-promoting rhizobacteria strains suppresses sweet pepper disease by altering the rhizosphere microbiota. Front. Microbiol. 10:1668.   DOI
16 Zhang, Y., Gao, X., Shen, Z., Zhu, C., Jiao, Z., Li, R. and Shen, Q. 2019b. Pre-colonization of PGPR triggers rhizosphere microbiota succession associated with crop yield enhancement. Plant Soil 439:553-567.   DOI
17 Liu, H., Xiong, W., Zhang, R., Hang, X., Wang, D., Li, R. and Shen, Q. 2018. Continuous application of different organic additives can suppress tomato disease by inducing the healthy rhizospheric microbiota through alterations to the bulk soil microflora. Plant Soil 423:229-240.   DOI
18 Casamayor, E. O., Massana, R., Benlloch, S., Ovreas, L., Diez, B., Goddard, V. J., Gasol, J. M., Joint, I., Rodriguez-Valera, F. and Pedros-Alio, C. 2002. Changes in archaeal, bacterial and eukaryal assemblages along a salinity gradient by comparison of genetic fingerprinting methods in a multipond solar saltern. Environ. Microbiol. 4:338-348.   DOI
19 Legendre, P. and Gallagher, E. D. 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129:271-280.   DOI
20 Liu, H., Carvalhais, L. C., Schenk, P. M. and Dennis, P. G. 2017. Effects of jasmonic acid signalling on the wheat microbiome differ between body sites. Sci. Rep. 7:41766.   DOI
21 Masciarelli, O., Llanes, A. and Luna, V. 2014. A new PGPR co-inoculated with Bradyrhizobium japonicum enhances soybean nodulation. Microbiol. Res. 169:609-615.   DOI
22 Min, W., Guo, H., Zhang, W., Zhou, G., Ma, L., Ye, J., Liang, Y. and Hou, Z. 2016. Response of soil microbial community and diversity to increasing water salinity and nitrogen fertilization rate in an arid soil. Acta Agric. Scand. Sect. B Soil Plant Sci. 66:117-126.   DOI
23 Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O'Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H. and Wagner, H. 2013. Vegan: community ecology package. R package version 2.0-10. R Foundation for Statistical Computing, Vienna, Austria.
24 Deng, Y., Jiang, Y.-H., Yang, Y., He, Z., Luo, F. and Zhou, J. 2012. Molecular ecological network analyses. BMC Bioinform. 13:113.   DOI
25 Garbeva, P., van Veen, J. A. and van Elsas, J. D. 2004. Microbial diversity in soil: selection microbial populations by plant and soil type and implications for disease suppressiveness. Annu. Rev. Phytopathol. 42:243-270.   DOI
26 Glick, B. R. 2012. Plant growth-promoting bacteria: mechanisms and applications. Scientifica (Cairo) 2012:963401.   DOI
27 Cole, J. R., Wang, Q., Fish, J. A., Chai, B., McGarrell, D. M., Sun, Y., Brown, C. T., Porras-Alfaro, A., Kuske, C. R. and Tiedje, J. M. 2014. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42:D633-D642.   DOI
28 Compant, S., Samad, A., Faist, H. and Sessitsch, A. 2019. A review on the plant microbiome: ecology, functions, and emerging trends in microbial application. J. Adv. Res. 19:29-37.   DOI
29 De Caceres, M. and Legendre, P. 2009. Associations between species and groups of sites: indices and statistical inference. Ecology 90:3566-3574.   DOI
30 Jamil, A., Riaz, S., Ashraf, M. and Foolad, M. R. 2011. Gene expression profiling of plants under salt stress. Crit. Rev. Plant Sci. 30:435-458.   DOI
31 Lebeis, S. L., Paredes, S. H., Lundberg, D. S., Breakfield, N., Gehring, J., McDonald, M., Malfatti, S., Glavina del Rio, T., Jones, C. D., Tringe, S. G. and Dangl, J. L. 2015. PLANT MICROBIOME: salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science 349:860-864.   DOI
32 Sawant, S. S., Kim, S. Y., Sang, M. K., Weon, H.-Y., Kim, S. and Song, J. 2019. Complete genome sequence of Bacillus mesonae H20-5, an efficient strain enhancing abiotic stress tolerance in plants. Korean J. Microbiol. 55:408-410.
33 Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., Lesniewski, R. A., Oakley, B. B., Parks, D. H., Robinson, C. J., Sahl, J. W., Stres, B., Thallinger, G. G., Van Horn, D. J. and Weber, C. F. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75:7537-7541.   DOI
34 Carvalhais, L. C., Dennis, P. G., Badri, D. V., Tyson, G. W., Vivanco, J. M. and Schenk, P. M. 2013. Activation of the jasmonic acid plant defence pathway alters the composition of rhizosphere bacterial communities. PLoS ONE 8:e56457.   DOI
35 Lee, S. A., Kim, Y., Kim, J. M., Chu, B., Joa, J.-H., Sang, M. K., Song, J. and Weon, H.-Y. 2019. A preliminary examination of bacterial, archaeal, and fungal communities inhabiting different rhizocompartments of tomato plants under real-world environments. Sci. Rep. 9:9300.   DOI
36 Anderson, M. J. 2001. A new method for non-parametric multivariate analysis of variance. Aust. Ecol. 26:32-46.   DOI
37 Olesen, J. M., Bascompte, J., Dupont, Y. L. and Jordano, P. 2007. The modularity of pollination networks. Proc. Natl. Acad. Sci. U. S. A. 104:19891-19896.   DOI
38 Panke-Buisse, K., Poole, A. C., Goodrich, J. K., Ley, R. E. and Kao-Kniffin, J. 2015. Selection on soil microbiomes reveals reproducible impacts on plant function. ISME J. 9:980-989.   DOI
39 Polonenko, D. R., Mayfield, C. I. and Dumbroff, E. B. 1986. Microbial responses to salt-induced osmotic stress. Plant Soil 92:417-425.   DOI
40 R Development Core Team. 2014. R: a language and environment for statistical computing. URL http://www.R-project.org/ [21 October 2021].
41 Shi, S., Nuccio, E. E., Shi, Z. J., He, Z., Zhou, J. and Firestone, M. K. 2016. The interconnected rhizosphere: high network complexity dominates rhizosphere assemblages. Ecol. Lett. 19:926-936.   DOI
42 Shrivastava, P. and Kumar, R. 2015. Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci. 22:123-131.   DOI
43 Tao, C., Li, R., Xiong, W., Shen, Z., Liu, S., Wang, B., Ruan, Y., Geisen, S., Shen, Q. and Kowalchuk, G. A. 2020. Bio-organic fertilizers stimulate indigenous soil Pseudomonas populations to enhance plant disease suppression. Microbiome 8:137.   DOI
44 Trabelsi, D. and Mhamdi, R. 2013. Microbial inoculants and their impact on soil microbial communities: a review. Biomed. Res. Int. 2013:863240.
45 Yang, J., Kloepper, J. W. and Ryu, C.-M. 2009. Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci. 14:1-4.   DOI
46 Kim, J. M., Roh, A.-S., Choi, S.-C., Kim, E.-J., Choi, M.-T., Ahn, B.-K., Kim, S.-K., Lee, Y.-H., Joa, J.-H., Kang, S.-S., Lee, S. A., Ahn, J.-H., Song, J. and Weon, H.-Y. 2016. Soil pH and electrical conductivity are key edaphic factors shaping bacterial communities of greenhouse soils in Korea. J. Microbiol. 54:838-845.   DOI
47 Mueller, L. A., Kugler, K. G., Dander, A., Graber, A. and Dehmer, M. 2011. QuACN: an R package for analyzing complex biological networks quantitatively. Bioinformatics 27:140-141.   DOI
48 Wei, Z., Gu, Y., Friman, V.-P., Kowalchuk, G. A., Xu, Y., Shen, Q. and Jousset, A. 2019. Initial soil microbiome composition and functioning predetermine future plant health. Sci. Adv. 5:eaaw0759.   DOI
49 Xue, C., Penton, C. R., Shen, Z., Zhang, R., Huang, Q., Li, R., Ruan, Y. and Shen, Q. 2015. Manipulating the banana rhizosphere microbiome for biological control of Panama disease. Sci. Rep. 5:11124.   DOI
50 Yang, H., Hu, J., Long, X., Liu, Z. and Rengel, Z. 2016. Salinity altered root distribution and increased diversity of bacterial communities in the rhizosphere soil of Jerusalem artichoke. Sci. Rep. 6:20687.   DOI
51 Yoo, S.-J., Kim, J. W., Kim, S. T., Weon, H.-Y., Song, J. and Sang, M. K. 2019a. Effect of Bacillus mesonae H20-5 on fruit yields and quality in protected cultivation. Res. Plant Dis. 25:84-88.   DOI
52 Yoo, S.-J., Weon, H.-Y., Song, J. and Sang, M. K. 2019b. Induced tolerance to salinity stress by halotolerant bacteria Bacillus aryabhattai H19-1 and B. mesonae H20-5 in tomato plants. J. Microbiol. Biotechnol. 29:1124-1136.   DOI