• 제목/요약/키워드: 16S rRNA genes

검색결과 329건 처리시간 0.031초

Analysis of miRNA expression in the trachea of Ri chicken infected with the highly pathogenic avian influenza H5N1 virus

  • Suyeon Kang;Thi Hao Vu;Jubi Heo;Chaeeun Kim;Hyun S. Lillehoj;Yeong Ho Hong
    • Journal of Veterinary Science
    • /
    • 제24권5호
    • /
    • pp.73.1-73.16
    • /
    • 2023
  • Background: Highly pathogenic avian influenza virus (HPAIV) is considered a global threat to both human health and the poultry industry. MicroRNAs (miRNA) can modulate the immune system by affecting gene expression patterns in HPAIV-infected chickens. Objectives: To gain further insights into the role of miRNAs in immune responses against H5N1 infection, as well as the development of strategies for breeding disease-resistant chickens, we characterized miRNA expression patterns in tracheal tissues from H5N1-infected Ri chickens. Methods: miRNAs expression was analyzed from two H5N1-infected Ri chicken lines using small RNA sequencing. The target genes of differentially expressed (DE) miRNAs were predicted using miRDB. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis were then conducted. Furthermore, using quantitative real-time polymerase chain reaction, we validated the expression levels of DE miRNAs (miR-22-3p, miR-146b-3p, miR27b-3p, miR-128-3p, miR-2188-5p, miR-451, miR-205a, miR-203a, miR-21-3p, and miR-200a3p) from all comparisons and their immune-related target genes. Results: A total of 53 miRNAs were significantly expressed in the infection samples of the resistant compared to the susceptible line. Network analyses between the DE miRNAs and target genes revealed that DE miRNAs may regulate the expression of target genes involved in the transforming growth factor-beta, mitogen-activated protein kinase, and Toll-like receptor signaling pathways, all of which are related to influenza A virus progression. Conclusions: Collectively, our results provided novel insights into the miRNA expression patterns of tracheal tissues from H5N1-infected Ri chickens. More importantly, our findings offer insights into the relationship between miRNA and immune-related target genes and the role of miRNA in HPAIV infections in chickens.

Molecular Phylogeny of the Family Tephritidae (Insecta: Diptera): New Insight from Combined Analysis of the Mitochondrial 12S, 16S, and COII Genes

  • Han, Ho-Yeon;Ro, Kyung-Eui
    • Molecules and Cells
    • /
    • 제27권1호
    • /
    • pp.55-66
    • /
    • 2009
  • The phylogeny of the family Tephritidae (Diptera: Tephritidae) was reconstructed from mitochondrial 12S, 16S, and COII gene fragments using 87 species, including 79 tephritid and 8 outgroup species. Minimum evolution and Bayesian trees suggested the following phylogenetic relationships: (1) A sister group relationship between Ortalotrypeta and Tachinisca, and their basal phylogenetic position within Tephritidae; (2) a sister group relationship between the tribe Acanthonevrini and Phytalmiini; (3) monophyly of Plioreocepta, Taomyia and an undescribed new genus, and their sister group relationship with the subfamily Tephritinae; (4) a possible sister group relationship of Cephalophysa and Adramini; and (5) reconfirmation of monophyly for Trypetini, Carpomyini, Tephritinae, and Dacinae. The combination of 12S, 16S, and COII data enabled resolution of phylogenetic relationships among the higher taxa of Tephritidae.

Phylogenetic Diversity of Bacteria in an Earth-Cave in Guizhou Province, Southwest of China

  • Zhou, Jun-Pei;Gu, Ying-Qi;Zou, Chang-Song;Mo, Ming-He
    • Journal of Microbiology
    • /
    • 제45권2호
    • /
    • pp.105-112
    • /
    • 2007
  • The objective of this study was to analyze the phylogenetic composition of bacterial community in the soil of an earth-cave (Niu Cave) using a culture-independent molecular approach. 16S rRNA genes were amplified directly from soil DNA with universally conserved and Bacteria-specific rRNA gene primers and cloned. The clone library was screened by restriction fragment length polymorphism (RFLP), and representative rRNA gene sequences were determined. A total of 115 bacterial sequence types were found in 190 analyzed clones. Phylogenetic sequence analyses revealed novel 16S rRNA gene sequence types and a high diversity of putative bacterial community. Members of these bacteria included Proteobacteria (42.6%), Acidobacteria (18.6%), Planctomycetes (9.0 %), Chloroflexi (Green nonsulfur bacteria, 7.5%), Bacteroidetes (2.1%), Gemmatimonadetes (2.7%), Nitrospirae (8.0%), Actinobacteria (High G+C Gram-positive bacteria, 6.4%) and candidate divisions (including the OP3, GN08, and SBR1093, 3.2%). Thirty-five clones were affiliated with bacteria that were related to nitrogen, sulfur, iron or manganese cycles. The comparison of the present data with the data obtained previously from caves based on 16S rRNA gene analysis revealed similarities in the bacterial community components, especially in the high abundance of Proteobacteria and Acidobacteria. Furthermore, this study provided the novel evidence for presence of Gemmatimonadetes, Nitrosomonadales, Oceanospirillales, and Rubrobacterales in a karstic hypogean environment.

Application of Molecular Methods for the Identification of Acetic Acid Bacteria Isolated from Blueberries and Citrus Fruits

  • Gerard, Liliana Mabel;Davies, Cristina Veronica;Solda, Carina Alejandra;Corrado, Maria Belen;Fernandez, Maria Veronica
    • 한국미생물·생명공학회지
    • /
    • 제48권2호
    • /
    • pp.193-204
    • /
    • 2020
  • Sixteen acetic acid bacteria (AAB) were isolated from blueberries and citric fruits of the Salto Grande region (Concordia, Entre Rios, Argentina) using enrichment techniques and plate isolation. Enrichment broths containing ethanol and acetic acid enabled maximum AAB recovery, since these components promote their growth. Biochemical tests allowed classification of the bacteria at genus level. PCR-RFLP of the 16S rRNA and PCR-RFLP of the 16S-23S rRNA intergenic spacer allowed further classification at the species level; this required treatment of the amplified products of 16S and 16S-23S ITS ribosomal genes with the following restriction enzymes: AluI, RsaI, HaeIII, MspI, TaqI, CfoI, and Tru9I. C7, C8, A80, A160, and A180 isolates were identified as Gluconobacter frateurii; C1, C2, C3, C4, C5, C6, A70, and A210 isolates as Acetobacter pasteurianus; A50 and A140 isolates as Acetobacter tropicalis; and C9 isolate as Acetobacter syzygii. The bacteria identified by 16S rRNA PCR-RFLP were validated by 16S-23S PCR-RFLP; however, the C1 isolate showed different restriction patterns during identification and validation. Partial sequencing of the 16S gene resolved the discrepancy.

ARDRA와 DGGE를 이용한 Halichondria panicea 해면의 공생세균 다양성 (Bacterial diversity of the Marine Sponge, Halichondria panicea by ARDRA and DGGE)

  • 박진숙
    • 미생물학회지
    • /
    • 제51권4호
    • /
    • pp.398-406
    • /
    • 2015
  • 제주도에서 채집한 해양 해면 Halichondria panicea의 공생세균 군집구조를 배양에 의한 ARDRA와 비배양에 의한 DGGE 분석 방법에 의하여 조사하였다. 16S rRNA gene-ARDRA 분석을 위해 변형된 Zobell 배지와 Marine agar를 이용하여 120균주를 선별하고 제한효소, HaeIII와 MspI을 사용하여 ARDRA type을 구분하였다. ARDRA type으로부터 유래한 16S rRNA gene 염기서열 분석 결과, 알려진 세균 종과 96% 이상의 유사도를 나타내었으며 Alphaproteobacteria, Gammaproteobacteria, Bacteroidetes, Firmicutes 등 3문 4강이 관찰되었다. 그 중 Alphaproteobacteria가 우점하였다. 같은 해면, H. panicea의 DGGE 분석을 위해 total genomic DNA로부터 16S rRNA gene를 증폭하여 DGGE fingerprinting을 수행한 결과 14개의 밴드가 관찰되었다. 각 밴드의 16S rRNA gene 염기서열은 알려진 세균의 염기서열과 100%의 유사성을 나타내었으며 대부분의 염기서열은 uncultured bacteria에 속하였다. DGGE 분석으로부터 미생물의 군집은 Alphaproteobacteria, Gammaproteobacteria, Acidobacteria, Actinobacteira, Bacteroidetes, Cyanobacteria, Chloroflexi 등 6문 7강으로 나타났다. ARDRA와 DGGE 방법에 의해 Alphaproteobacteria, Gammaproteobacteria, Bacteroidetes가 공통적으로 발견되었으나 전체적인 공생세균의 군집구조는 분석방법에 따라 차이를 나타내었다. 배양에 의한 방법보다 비배양 방법에서 더 다양한 세균군집구조를 나타내었다.

Anaerobic Ammonium-Oxidizing Bacteria in Cow Manure Composting

  • Wang, Tingting;Cheng, Lijun;Zhang, Wenhao;Xu, Xiuhong;Meng, Qingxin;Sun, Xuewei;Liu, Huajing;Li, Hongtao;Sun, Yu
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권7호
    • /
    • pp.1288-1299
    • /
    • 2017
  • Composting is widely used to transform waste into valuable agricultural organic fertilizer. Anaerobic ammonium-oxidizing (anammox) bacteria play an important role in the global nitrogen cycle, but their role in composting remains poorly understood. In the present study, the community structure, diversity, and abundance of anammox bacteria were analyzed using cloning and sequencing methods by targeting the 16S rRNA gene and the hydrazine oxidase gene (hzo) in samples isolated from compost produced from cow manure and rice straw. A total of 25 operational taxonomic units were classified based on 16S rRNA gene clone libraries, and 14 operational taxonomic units were classified based on hzo gene clone libraries. The phylogenetic tree analysis of the 16S rRNA gene and deduced HZO protein sequences from the corresponding encoding genes indicated that the majority of the obtained clones were related to the known anammox bacteria Candidatus "Brocadia," Candidatus "Kuenenia," and Candidatus "Scalindua." The abundances of anammox bacteria were determined by quantitative PCR, and between $2.13{\times}10^5$ and $1.15{\times}10^6$ 16S rRNA gene copies per gram of compost were found. This study provides the first demonstration of the existence of anammox bacteria with limited diversity in cow manure composting.

PCR-DGGE를 이용한 막걸리발효에서 미생물 다양성 분석 (Analysis of Microbial Diversity in Makgeolli Fermentation Using PCR-DGGE)

  • 권승직;안태영;손재학
    • 생명과학회지
    • /
    • 제22권2호
    • /
    • pp.232-238
    • /
    • 2012
  • 금정산성 막걸리$^{(R)}$는 전통적인 수제누룩과 쌀로부터 발효된 한국의 전통적인 술이다. 본 연구에서는 막걸리 발효기간 동안 세균과 진균의 다양성을 특성화하기 위해 16S와 28S rRNA 유전자를 목적으로 하는 PCRDenaturing Gradient Gel Electrophoresis (PCR-DGGE) 분석을 수행하였다. 막걸리 발효기간 동안 PCR-DGGE profile에서 검출된 세균은 16S rRNA 유전자 서열에 기초한 동정결과 Lactobacillus spp. (L. curvatus, L. kisonensis, L. plantarum, L. sakei 및 L. gasseri), Pediococcus spp. (P. acidilactici, P. parvulus, P. agglomerans및 P. pentosaceus), Pantoea spp. (P. agglomerans 및 P. ananatis) 그리고 Citrobacter freundii로 총 12종이었으며, 배양2일 이후 L. curvatus가 주된 우점 종을 형성하였다. 반면 PCR-DGGE profile에서 검출된 진균은 28S rRNA 유전자 서열에 기초한 동정결과 Pichia kudriavzevii, Saccharomyces cerevisiae, Asidia idahoensis, Kluyveromyces marxianus, Saccharomycopsis fibuligera 및 Torulaspora delbrueckii로 6종이었으며 주된 우점 진균은 배양0일에서 2일에 P. kudriavzevii에서 배양 3일에서 6일에 S. cerevisiae로 전환되었다. 결과적으로 PCR-DGGE분석은 막걸리발효기간 동안 미생물의 구조와 다양성을 이해하는 데 유용한 도구임을 보여주었다.

Analysis of Plasmid pJP4 Horizontal Transfer and Its Impact on Bacterial Community Structure in Natural Soil

  • KIM TAE SUNG;KIM MI SOON;JUNG MEE KUM;JOE MIN JEONG;AHN JAE HYUNG;OH KYOUNG HEE;LEE MIN HYO;KIM MIN KYUN;KA JONG OK
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권2호
    • /
    • pp.376-383
    • /
    • 2005
  • Alcaligenes sp. JMP228 carrying 2,4­dichlorophenoxyacetic acid (2,4-D) degradative plasmid pJP4 was inoculated into natural soil, and transfer of the plasmid pJP4 to indigenous soil bacteria was investigated with and without 2,4-D amendment. Plasmid pJP4 transfer was enhanced in the soils treated with 2,4-D, compared to the soils not amended with 2,4-D. Several different transconjugants were isolated from the soils treated with 2,4-D, while no indigenous transconjugants were obtained from the unamended soils. Inoculation of the soils with both the donor Alcaligenes sp. JMP228/pJP4 and a recipient Burkholderia cepacia DBO 1 produced less diverse transconjugants than the soils inoculated with the donor alone. Repetitive extragenic palindromic-polymerase chain reaction (REP-PCR) analysis of the transconjugants exhibited seven distinct genomic DNA fingerprints. Analysis of 16S rDNA sequences indicated that the transconjugants were related to members of the genera Burkholderia and Pandoraea. Denaturing gradient gel electrophoresis (DGGE) analysis of PCR-amplified 16S rRNA genes revealed that inoculation of the donor caused clear changes in the bacterial community structure of the 2,4-D­amended soils. The new 16S rRNA gene bands in the DGGE profile corresponded with the 16S rRNA genes of 2,4-D­degrading transconjugants isolated from the soil. The results indicate that introduction of the 2,4-D degradative plasmid as Alcaligenes sp. JMP228/pJP4 has a substantial impact on the bacterial community structure in the 2,4-D-amended soil.

Genomic Analysis of a Freshwater Actinobacterium, "Candidatus Limnosphaera aquatica" Strain IMCC26207, Isolated from Lake Soyang

  • Kim, Suhyun;Kang, Ilnam;Cho, Jang-Cheon
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권4호
    • /
    • pp.825-833
    • /
    • 2017
  • Strain IMCC26207 was isolated from the surface layer of Lake Soyang in Korea by the dilutionto-extinction culturing method, using a liquid medium prepared with filtered and autoclaved lake water. The strain could neither be maintained in a synthetic medium other than natural freshwater medium nor grown on solid agar plates. Phylogenetic analysis of 16S rRNA gene sequences indicated that strain IMCC26207 formed a distinct lineage in the order Acidimicrobiales of the phylum Actinobacteria. The closest relative among the previously identified bacterial taxa was "Candidatus Microthrix parvicella" with 16S rRNA gene sequence similarity of 91.7%. Here, the draft genome sequence of strain IMCC26207, a freshwater actinobacterium, is reported with the description of the genome properties and annotation summary. The draft genome consisted of 10 contigs with a total size of 3,316,799 bp and an average G+C content of 57.3%. The IMCC26207 genome was predicted to contain 2,975 protein-coding genes and 51 non-coding RNA genes, including 45 tRNA genes. Approximately 76.8% of the protein coding genes could be assigned with a specific function. Annotation of the IMCC26207 genome showed several traits of adaptation to living in oligotrophic freshwater environments, such as phosphorus-limited condition. Comparative genomic analysis revealed that the genome of strain IMCC26207 was distinct from that of "Candidatus Microthrix" strains; therefore, we propose the name "Candidatus Limnosphaera aquatica" for this bacterium.

Microbial Community Analysis using RDP II (Ribosomal Database Project II):Methods, Tools and New Advances

  • Cardenas, Erick;Cole, James R.;Tiedje, James M.;Park, Joon-Hong
    • Environmental Engineering Research
    • /
    • 제14권1호
    • /
    • pp.3-9
    • /
    • 2009
  • Microorganisms play an important role in the geochemical cycles, industry, environmental cleanup, and biotechnology among other fields. Given the high microbial diversity, identification of the microorganism is essential in understanding and managing the processes. One of the most popular and powerful method for microbial identification is comparative 16S rRNA gene analysis. Due to the highly conserved nature of this essential gene, sequencing and later comparison of it against known rRNA databases can provide assignment of the bacteria into the taxonomy, and the identity of its closest relatives. Isolation and sequencing of 16S rRNA genes directly from natural environments (either from DNA or RNA) can also be used to study the structure of the whole microbial community. Nowadays, novel sequencing technologies with massive outputs are giving researchers worldwide the chance to study the microbial world with a depth that was previously too expensive to achieve. In this article we describe commonly used research approaches for the study of individual microorganisms and microbial communities using the tools provided by Ribosomal Database Project website.