Analysis of Plasmid pJP4 Horizontal Transfer and Its Impact on Bacterial Community Structure in Natural Soil

  • KIM TAE SUNG (School of Agricultural Biotechnology, Seoul National University, Biological Resources Division, Biodiversity Research Department, National Institute of Environmental Research) ;
  • KIM MI SOON (School of Agricultural Biotechnology, Seoul National University) ;
  • JUNG MEE KUM (School of Agricultural Biotechnology, Seoul National University) ;
  • JOE MIN JEONG (School of Agricultural Biotechnology, Seoul National University) ;
  • AHN JAE HYUNG (School of Agricultural Biotechnology, Seoul National University) ;
  • OH KYOUNG HEE (Biological Resources Division, Biodiversity Research Department, National Institute of Environmental Research) ;
  • LEE MIN HYO (Biological Resources Division, Biodiversity Research Department, National Institute of Environmental Research) ;
  • KIM MIN KYUN (School of Agricultural Biotechnology, Seoul National University) ;
  • KA JONG OK (School of Agricultural Biotechnology, Seoul National University)
  • Published : 2005.04.01

Abstract

Alcaligenes sp. JMP228 carrying 2,4­dichlorophenoxyacetic acid (2,4-D) degradative plasmid pJP4 was inoculated into natural soil, and transfer of the plasmid pJP4 to indigenous soil bacteria was investigated with and without 2,4-D amendment. Plasmid pJP4 transfer was enhanced in the soils treated with 2,4-D, compared to the soils not amended with 2,4-D. Several different transconjugants were isolated from the soils treated with 2,4-D, while no indigenous transconjugants were obtained from the unamended soils. Inoculation of the soils with both the donor Alcaligenes sp. JMP228/pJP4 and a recipient Burkholderia cepacia DBO 1 produced less diverse transconjugants than the soils inoculated with the donor alone. Repetitive extragenic palindromic-polymerase chain reaction (REP-PCR) analysis of the transconjugants exhibited seven distinct genomic DNA fingerprints. Analysis of 16S rDNA sequences indicated that the transconjugants were related to members of the genera Burkholderia and Pandoraea. Denaturing gradient gel electrophoresis (DGGE) analysis of PCR-amplified 16S rRNA genes revealed that inoculation of the donor caused clear changes in the bacterial community structure of the 2,4-D­amended soils. The new 16S rRNA gene bands in the DGGE profile corresponded with the 16S rRNA genes of 2,4-D­degrading transconjugants isolated from the soil. The results indicate that introduction of the 2,4-D degradative plasmid as Alcaligenes sp. JMP228/pJP4 has a substantial impact on the bacterial community structure in the 2,4-D-amended soil.

Keywords

References

  1. Bae, J. W., J. J. Kim, C. O. Jeon, K. Kim, J. J. Song, S. G. Lee, H. R. Poo, C. M. Jung, Y. H. Park. and M. H. Sung. 2003. Application of denaturing gradient gel electrophoresis to estimate the diversity of commensal thermophiles. J. Microbiol. Biotechnol. 13(6): 1008- 1012
  2. Balkwill, D. L. 1990. Deep-aquifer microorganisms, pp. 183- 211. In D. P. Labeda (ed.) Isolation of Biotechnological Organisms from Nature. McGraw-Hill Publ. Co., New York, U.S.A
  3. Biederbeck, V. O., C. A. Campbell, and A. E. Smith. 1987. Effects of long-term 2,4-D field applications on soil biochemical processes. J. Environ. Qual. 16: 257- 262 https://doi.org/10.2134/jeq1987.00472425001600030013x
  4. Cho. M. J., Y. K. Kim, and J. O. Ka. 2004. Molecular differentiation of Bacillus spp. antagonistic against phytopathogenic fungi causing damping-off disease. J. Microbiol. Biotechnol. 14(3): 599- 606
  5. Daane, L. L., J. A. E. Molina, and M. J. Sadowsky. 1997. Plasmid transfer between spatially separated donor and recipient bacteria in earthworm-containing soil microcosms. Appl. Environ. Microbiol. 63: 679- 686
  6. de Bruijn, F. J. 1992. Use of repetitive (repetitive extragenic palindromic and enterobacterial repetitive intergeneric consensus) sequences and the polymerase chain reaction to fingerprint the genomes of Rhizobium meliloti isolates and other soil bacteria. Appl. Environ. Microbiol. 58: 2180- 2187
  7. Don, R. H. and J. M. Pemberton. 1981. Properties of six pesticide degradation plasmids isolated from Alcaligenes paradoxus and Alcaligenes eutrophus. J. Bacteriol. 145: 681- 686
  8. Don, R. H. and J. M. Pemberton. 1985. Genetic and physical map of the 2,4-dichlorophenoxyacetic acid-degradative plasmid pJP4. J. Bacteriol. 161: 466- 468
  9. Ferris, M. J., G. Muyzer, and D. M. Ward. 1996. Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring Microbiol mat community. Appl. Environ. Microbiol. 62: 340- 346
  10. Foster, R. K. and R. B. Mckercher. 1973. Laboratory incubation studies of chlorophenoxyacetic acids in Chemozemic soils. Soil Biol. Biochem. 5: 333- 337 https://doi.org/10.1016/0038-0717(73)90081-3
  11. Fournier, J. C. 1980. Enumeration of the soil microorganisms able to degrade 2,4-D by metabolism or co-metabolism. Chemosphere 9: 169- 174 https://doi.org/10.1016/0045-6535(80)90089-2
  12. Hong, S. M., Y. W. Lee, C. K. Kim, and J. O. Ka. 1996. Fate of genetically engineered 2,4-D-degrading microorganisms in natural soils and waters. J. Microbiol. 34(4): 320- 326
  13. Ka, J. O. and J. M. Tiedje. 1994. Integration and excision of a 2,4-diehlorophenoxyacetie aeid-degradative plasmid in Alcaligenes paradux and evidence of its natural intergeneric transfer. J. Bacteriol. 176: 5284- 5289 https://doi.org/10.1128/jb.176.17.5284-5289.1994
  14. Ka, J. O., W. E. Holben, and J. M. Tiedje. 1994. Use of gene probes to aid in recovery and identification of functionally dominant 2,4-dichlorophenoxyacetic acid-degrading populations in soil. Appl. Environ. Microbiol. 60: 1116- 1120
  15. Kado, C. I. and S. T. Liu. 1981. Rapid procedure for detection and isolation of large and small plasmids. J. Bacteriol. 145: 1365- 1373
  16. Kim, Y. T., B. K. Park. E. I. Hwang, N. H. Yim, N. R. Kim, T. H. Kang, S. H. Lee, and S. U. Kim. 2004. Investigation of possible gene transfer to soil microorganisms for environmental risk assessment of genetically modified organisms. J. Microbiol. Biotechnol. 14(3): 498- 502
  17. Kunc, F. and J. Rybarova, 1893. Mineralization of carbon atoms of 14C-2,4-D side chain and degradation ability of bacteria in soil. Soil Biol. Biochem. 15: 141- 144 https://doi.org/10.1016/0038-0717(83)90094-9
  18. Lane, D. J. 1991. 16S/23S rRNA sequencing, pp. 115-148. In E. Stackebrandt and M. Goodfellow (eds.), Nucleic Acid Techniques in Bacterial Systematics. John Wiley and Sons, Chichester, England
  19. Loos, M. A., I. F. Schlosser, and W. R. Mapham. 1979. Phenoxy herbicide degradation in soils: Quantitative studies of 2,4-D- and MCPA-degrading Microbiol populations. Soil Biol. Biochem. 11: 377- 385 https://doi.org/10.1016/0038-0717(79)90051-8
  20. Maidak, B. L., J. R. Cole, T. G. Lilburn, C. T. Parker Jr, P. R. Saxman, J. M. Stredwick, G. M. Garrity, B. Li, G. J. Olsen, S. Pramanik, T M. Schmidt, and J. M. Tiedje. 2000. The RDP (Ribosomal Database Project) continues. Nucleic Acids Res. 28(1): 173- 174 https://doi.org/10.1093/nar/28.1.173
  21. Neilson, J. W., K. L. Josephson, I. L. Pepper, R. G. Arnold, G. D. DiGiovanni, and N. A. Sinclair. 1994. Frequency of horizontal gene transfer of a large catabolic plasmid (pJP4) in soil. Appl. Environ. Microbiol. 60: 4053- 4058
  22. Newby, D. T., T. J. Gentry, and I. L. Pepper. 2000. Comparison of 2,4-dichlorophenoxyacetic acid degradation and plasmid transfer in soil resulting from bioaugrnentation with two different pJP4 donors. Appl. Environ. Microbiol. 66: 3399- 3407 https://doi.org/10.1128/AEM.66.8.3399-3407.2000
  23. Newby, D. T., K. L. Josephson, and I. L. Pepper. 2000. Detection and characterization of plasmid pJP4 transfer to indigenous soil bacteria. Appl. Environ. Microbiol. 66: 290- 296 https://doi.org/10.1128/AEM.66.1.290-296.2000
  24. Norris, T. B., J. M. Wraith, R. W. Castenholz, and T. R. McDermott. 2002. Soil Microbiol community structure across a thermal gradient following a geothermal heating event. Appl. Environ. Microbiol. 68: 6300- 6309 https://doi.org/10.1128/AEM.68.12.6300-6309.2002
  25. Ou, L. T. 1984. 2,4-D degradation and 2,4-D degrading microorganisms in soils. Soil Sci. 137: 100- 107 https://doi.org/10.1097/00010694-198402000-00004
  26. Ou, L. T., J. M. Davidson, and D. F. Rothwell. 1978. Response of soil microflora to high 2,4-D applications. Soil Biol. Biochem. 10: 443- 445 https://doi.org/10.1016/0038-0717(78)90074-3
  27. Park. I. H. and J. O. Ka. 2003. Isolation and characterization of 4-(2,4-dichlorophenoxy )butyric acid-degrading bacteria from agricultural soils. J. Microbiol. Biotechnol. 13: 243- 250
  28. Ravel, J., E. M. H. Wellington, and R. T. Hill. 2000. Interspecific transfer of streptomyces giant plasmids in sterile amended soil microcosms. Appl. Environ. Microbiol. 66: 529- 534 https://doi.org/10.1128/AEM.66.2.529-534.2000
  29. Top, E. M., P. Van Daele, N. De Saeyer, and L. J. Forney. 1998. Enhancement of 2,4-dichlorophenoxyacetic acid (2,4-D) degradation in soil by dissemination of catabolic plasmids. Antonie Leeuwenhoek 73: 87- 94 https://doi.org/10.1023/A:1000663619522
  30. Versalovic, J., M. Schneider, F. J. de Bruijn, and J. R. Lupski. 1994. Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol. Cell Biol. 5: 25- 40
  31. Weaver, R. W., J. S. Angle, and P. S. Bottomley. 1999. Methods of Soil Analysis: Part 2 - Microbiological and Biochemical Properties. Soil Science Society of America, Madison, U.S.A
  32. Yu, Z., V J. J. Martin, and W W. Mohn. 1999. Occurrence of two resin acid-degrading bacteria and a gene encoding resin acid biodegradation in pulp and paper mill effluent biotreatment systems assayed by PCR. Microb. Ecol. 38: 114- 125 https://doi.org/10.1007/s002489900163