Browse > Article
http://dx.doi.org/10.4014/mbl.1912.12006

Application of Molecular Methods for the Identification of Acetic Acid Bacteria Isolated from Blueberries and Citrus Fruits  

Gerard, Liliana Mabel (Laboratorio de Microbiologia y Biotecnologia de Alimentos, Facultad de Ciencias de la Alimentacion, Universidad Nacional de Entre Rios)
Davies, Cristina Veronica (Laboratorio de Microbiologia y Biotecnologia de Alimentos, Facultad de Ciencias de la Alimentacion, Universidad Nacional de Entre Rios)
Solda, Carina Alejandra (Laboratorio de Microbiologia y Biotecnologia de Alimentos, Facultad de Ciencias de la Alimentacion, Universidad Nacional de Entre Rios)
Corrado, Maria Belen (Laboratorio de Microbiologia y Biotecnologia de Alimentos, Facultad de Ciencias de la Alimentacion, Universidad Nacional de Entre Rios)
Fernandez, Maria Veronica (Laboratorio de Microbiologia y Biotecnologia de Alimentos, Facultad de Ciencias de la Alimentacion, Universidad Nacional de Entre Rios)
Publication Information
Microbiology and Biotechnology Letters / v.48, no.2, 2020 , pp. 193-204 More about this Journal
Abstract
Sixteen acetic acid bacteria (AAB) were isolated from blueberries and citric fruits of the Salto Grande region (Concordia, Entre Rios, Argentina) using enrichment techniques and plate isolation. Enrichment broths containing ethanol and acetic acid enabled maximum AAB recovery, since these components promote their growth. Biochemical tests allowed classification of the bacteria at genus level. PCR-RFLP of the 16S rRNA and PCR-RFLP of the 16S-23S rRNA intergenic spacer allowed further classification at the species level; this required treatment of the amplified products of 16S and 16S-23S ITS ribosomal genes with the following restriction enzymes: AluI, RsaI, HaeIII, MspI, TaqI, CfoI, and Tru9I. C7, C8, A80, A160, and A180 isolates were identified as Gluconobacter frateurii; C1, C2, C3, C4, C5, C6, A70, and A210 isolates as Acetobacter pasteurianus; A50 and A140 isolates as Acetobacter tropicalis; and C9 isolate as Acetobacter syzygii. The bacteria identified by 16S rRNA PCR-RFLP were validated by 16S-23S PCR-RFLP; however, the C1 isolate showed different restriction patterns during identification and validation. Partial sequencing of the 16S gene resolved the discrepancy.
Keywords
Acetic acid bacteria; isolation; PCR-RFLP; 16S rRNA sequencing; citrus fruits; blueberries;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Gonzalez A, Hierro N, Poblet M, Rozes N, Mas A, Guillamon JM. 2004. Application of molecular methods for the differentiation of acetic acid bacteria in a red wine fermentation. J. Appl. Microbiol. 96: 853-860.   DOI
2 Gonzalez A, Hierro N, Poblet M, Mas A, Guillamon JM. 2005. Application of molecular methods to demonstrate species and strain evolution of acetic acid bacteria population during wine production. Int. J. Food Microbiol. 102: 295-304.   DOI
3 Kappeng K, Pathomaree W. 2009. Isolation of acetic acid bacteria from honey. J. Sci. Technol. 3: 71-76.
4 Malimas T, Yukphan P, Lundaa T, Muramatsu Y, Takahashi M, Kaneyasu M, et al. 2009. Gluconobacter kanchanaburiensis sp. nov., a brown pigment-producing acetic acid bacterium for Thai isolates in the Alphaproteobacteria. J. Gen. Appl. Microbiol. 55: 247-254.   DOI
5 Yukphan, P, Malimas T, Muramatsu Y, Takahashi M, Kaneyasu M, Potacharoen W, et al. 2009. Ameyamaea chiangmaiensis gen. nov., sp. nov., an acetic acid bacterium in the $\alpha$-Proteobacteria. Biosci. Biotechnol. Biochem. 73: 2156-2162.   DOI
6 Komagata K, Iino T, Yamada Y. 2014. The family Acetobacteraceae, pp. 547-577. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (Eds), The Prokaryotes - Alphaproteobacteria and Betaproteobacteria. Berlín: Springer-Verlag.
7 Trcek J, Barja F. 2015. Updates on quick identification of acetic acid bacteria with a focus on the 16S-23S rRNA gene internal transcribed spacer and the analysis of cell proteins by MALDI-TOF mass spectrometry. Int. J. Food Microbiol. 196: 137-144.   DOI
8 Malimas T, Thi Lan Vu H, Muramatsu Y, Yukphan P, Tanasupawat S, Yamada Y. 2017. Systematics of acetic acid bacteria. In Sengun IY (Ed), Acetic acid bacteria fundamentals and food applications, Boca Raton: CRC Press, pp. 3-43.
9 Gomes RJ, Borges MF, Rosa MF, Castro-Gomez RJ, Spinosa WA. 2018. Acetic Acid Bacteria in the Food Industry: Systematics, Characteristics and Applications. Food Technol. Biotechnol. 56: 139-151.
10 Lynch KM, Zannini E, Wilkinson S, Daenen L, Arendt EK. 2019. Physiology of Acetic Acid Bacteria and Their Role in Vinegar and Fermented Beverages. Compr. Rev. Food Sci. Food Saf. 18: 587-625.   DOI
11 Gullo M, Caggia C, De Vero L, Giudici P. 2006. Characterization of acetic acid bacteria in 'Traditional Balsamic Vinegar'. Int. J. Food Microbiol. 106: 209-212.   DOI
12 Bou G, Fernandez-Olmos A, Garcia C, Saez-Nieto JA, Valdezate S. 2011. Metodos de identificacion bacteriana en el laboratorio de Microbiologia. Enferm. Infecc. Microbiol. Clin. 29: 601-608.   DOI
13 Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35: 1547-1549.   DOI
14 Iino T, Suzuki R, Kosako Y, Ohkuma M, Komagata K, Uchimura T. 2012. Acetobacter okinawensis sp. nov., Acetobacter papayae sp. nov., and Acetobacter persicus sp. nov.; novel acetic acid nacteria isolated from stems of sugarcane, fruits , and a flower in Japan. J. Gen. Appl. Microbiol. 58: 235-243.   DOI
15 Yamada Y, Yukphan P, Vu HT, Muramatsu Y, Ochaikul D, Nakagawa Y. 2012. Subdivision of the genus Gluconacetobacter Yamada, Hoshino and Ishikawa 1998: the proposal of Komagatabacter gen. nov., for strains accommodated to the Gluconacetobacter xylinus group in the $\alpha$-Proteobacteria. Ann. Microbiol. 62: 849-859.   DOI
16 Slapsak N, Cleenwerck I, De Vos P, Trcek J. 2013. Gluconacetobacter maltaceti sp. nov., a novel vinegar producing acetic acid bacterium. Syst. Appl. Microbiol. 36: 17-21.   DOI
17 Haghshenas B, Nami Y, Abdullah N, Radiah D, Rosli R, Barzegari A, et al. 2015. Potentially probiotic acetic acid bacteria isolation and identification from traditional dairies microbiota. J. Food Sci. Technol. 50: 1056-1064.   DOI
18 Yamada Y, Okada Y, Kondo K. 1976. Isolation and characterization of 'polarly flagellated intermediate strains' in acetic acid bacteria. J. Gen. Appl. Microbiol. 22: 237-245.   DOI
19 Tanasupawat S, Kommanee J, Malimas T, Yukphan P, Nakagawa Y, Yamada Y. 2009. Identification of Acetobacter, Gluconobacter, and Asaia strains isolated in Thailand based on 16S-23S rRNA gene internal transcribed spacer restriction and 16S rRNA gene sequence analyses. Microbes Environ. 24: 135-43.   DOI
20 Hall T. 2011. BioEdit: An important software for molecular biology. J. Biosci. 2: 60-61.
21 Giudici P, De Vero L, Gullo M. 2017. Vinegars, pp. 261-287. In Sengun IY (Ed), Acetic acid bacteria fundamentals and food applications, Boca Raton: CRC Press.
22 Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, et al. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl. Acids Res. 25: 3389-3402.   DOI
23 Saitou N, Nei M. 1987. The Neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
24 Beheshti Maal K, Shafiee R. 2011. A thermotolerant Acetobacter strain isolated from iranian peach suitable for industrial microbiology. Asian J. Biol. Sci. 4: 244-251.   DOI
25 Gonzalez A, Guillamon JM, Mas A, Poblet M. 2006. Application of molecular methods for routine identification of acetic acid bacteria. Int. J. Food Microbiol. 108: 141-146.   DOI
26 Stackebrandt E, Frederiksen W, Garrity GM, Grimont PA, Kampfer P, Maiden MC, et al. 2002. Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int. J. Syst. Evol. Microbiol. 52: 1043-1047.   DOI
27 Blasco Escriva L. 2009. Aplicacion de las tecnicas Fish, PCR específica y 16S-ARDRA al estudio de la poblacion bacteriana asociada al proceso de vinificacion. (Tesis Doctoral). Universitat de Valencia. Facultat de Ciencies Biologiques. Departament de Microbiologia i Ecologia. Valencia, Espana.
28 Kommanee J, Akaracharanya A, Tanasupawat S, Malimas T. 2008. Identification of Acetobacter strains isolated in Thailand based on 16S-23S rRNA gene ITS restriction and 16S rRNA gene sequence analyses. Ann. Microbiol. 58: 319-324.   DOI
29 Tanasupawat S, Kommanee J, Malimas T, Yukphan P, Nakagawa Y, Yamada Y. 2009. Identification of Acetobacter, Gluconobacter and Asaia strains isolated in Thailand based on 16S-23S rRNA gene internal transcribed spacer restriction and 16S rRNA gene sequence analyses. Microbes Environ. 24: 135-143.   DOI
30 Thi Lan Vu H, Malimas T, Yukphan P, Potacharoen W, Tanasupawat S, Thanh Loan LT, et al. 2007. Identification of Thai isolates assigned to the genus Gluconobacter based on 16S-23S rDNA ITS restriction analysis. J. Gen. Appl. Microbiol. 53: 133-142.   DOI
31 Guillamon JM, Mas A. 2009. Acetic acid bacteria, pp. 31-46. In Konig H, Unden G, Frohlich J (Eds), Biology of Microorganisms on Grapes, in Must and in Wine. Berlin: Springer-Verlag, Heidelberg.
32 Andres-Barrao C, Barja F, Ortega Perez R, Chappuis M, Braito S, Hospital Bravo A. 2017. Identification techniques of acetic acid bacteria: comparison between MALDI-TOF MS and molecular biology techniques, pp. 162-192. In I.Y. Sengun (Ed), Acetic acid bacteria fundamentals and food applications. Boca Raton: CRC Press.
33 Mateo E, Torija MJ, Mas A, Bartowsky EJ. 2014. Acetic acid bacteria isolated from grapes of South Australian vineyards. Int. J. Food Microbiol. 178: 98-106.   DOI
34 Lisdiyanti P, Katsura K, Potacharoen W, Navarro RR, Yamada Y, Uchimura T, et al. 2003. Diversity of acetic acid bacteria in Indonesia, Thailand, and the Philippines. Microbiol. Cult Coll. 19: 91-99.
35 Vegas C, Mateo E, Gonzalez A, Jara C, Guillamon JM, Poblet M, et al. 2010. Population dynamics of acetic acid bacteria during traditional wine vinegar production. Int. J. Food Microbiol. 138: 130-136.   DOI
36 Hidalgo C, Torija MJ, Mas M, Mateo E. 2013. Effect of inoculation on strawberry fermentation and acetification processes using native strains of yeast and acetic acid bacteria. Food Microbiol. 34: 88-94.   DOI
37 Gonzalez A, Mas A. 2011. Differentiation of acetic acid bacteria based on sequence analysis of 16S-23S rRNA gene internal transcribed spacer sequences. Int. J. Food Microbiol. 147: 217-222.   DOI
38 Valera MJ, Laich F, González SS, Torija MJ, Mateo E., Mas A. 2011. Diversity of acetic acid bacteria present in healthy grapes from the Canary Islands. Int. J. Food Microbiol. 151: 105-112.   DOI
39 Seearunruangchai A, Tanasupawat S, Keeratipibul S, Thawai C, Itoh T, Yamada Y. 2004. Identification of acetic acid bacteria isolated from fruits collected in Thailand. J. Gen. Appl. Microbiol. 50: 47-53.   DOI
40 Romero-Cortes T, Robles-Olera V, Rodriguez-Jimenes G, Ramirez-Lepe M. 2012. Isolation and characterization of acetic acid bacteria in cocoa fermentation. Afr. J. Microbiol. Res. 6: 339-347.
41 Ruiz A, Poblet M, Mas A, Guillamon M. 2000. Identification of acetic acid bacteria by RFLP of PCR-amplified 16S rDNA and 16S-23S rDNA intergenic spacer. Int. J. Syst. Evol. Microbiol. 50: 1981-1987.   DOI
42 Sengun IY, Karabiyikli S. 2011. Importance of acetic acid bacteria in food industry. Food Control. 22: 647-656.   DOI