Browse > Article
http://dx.doi.org/10.4014/jmb.1701.01047

Genomic Analysis of a Freshwater Actinobacterium, "Candidatus Limnosphaera aquatica" Strain IMCC26207, Isolated from Lake Soyang  

Kim, Suhyun (Department of Biological Sciences, Inha University)
Kang, Ilnam (Department of Biological Sciences, Inha University)
Cho, Jang-Cheon (Department of Biological Sciences, Inha University)
Publication Information
Journal of Microbiology and Biotechnology / v.27, no.4, 2017 , pp. 825-833 More about this Journal
Abstract
Strain IMCC26207 was isolated from the surface layer of Lake Soyang in Korea by the dilutionto-extinction culturing method, using a liquid medium prepared with filtered and autoclaved lake water. The strain could neither be maintained in a synthetic medium other than natural freshwater medium nor grown on solid agar plates. Phylogenetic analysis of 16S rRNA gene sequences indicated that strain IMCC26207 formed a distinct lineage in the order Acidimicrobiales of the phylum Actinobacteria. The closest relative among the previously identified bacterial taxa was "Candidatus Microthrix parvicella" with 16S rRNA gene sequence similarity of 91.7%. Here, the draft genome sequence of strain IMCC26207, a freshwater actinobacterium, is reported with the description of the genome properties and annotation summary. The draft genome consisted of 10 contigs with a total size of 3,316,799 bp and an average G+C content of 57.3%. The IMCC26207 genome was predicted to contain 2,975 protein-coding genes and 51 non-coding RNA genes, including 45 tRNA genes. Approximately 76.8% of the protein coding genes could be assigned with a specific function. Annotation of the IMCC26207 genome showed several traits of adaptation to living in oligotrophic freshwater environments, such as phosphorus-limited condition. Comparative genomic analysis revealed that the genome of strain IMCC26207 was distinct from that of "Candidatus Microthrix" strains; therefore, we propose the name "Candidatus Limnosphaera aquatica" for this bacterium.
Keywords
Actinobacteria; "Candidatus Microthrix"; "Candidatus Limnosphaera"; genome; freshwater; dilution-to-extinction culturing;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zwart G, Crump BC, Kamst-van Agterveld MP, Hagen F, Han S-K. 2002. Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquat. Microb. Ecol. 28: 141-155.   DOI
2 Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S. 2011. A guide to the natural history of freshwater lake bacteria. Microbiol. Mol. Biol. Rev. 75: 14-49.   DOI
3 Tranvik LJ, Downing JA, Cotner JB, Loiselle SA, Striegl RG, Ballatore TJ, et al. 2009. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol. Oceanogr. 54: 2298-2314.   DOI
4 Garcia SL, McMahon KD, Martinez-Garcia M, Srivastava A, Sczyrba A, Stepanauskas R, et al. 2013. Metabolic potential of a single cell belonging to one of the most abundant lineages in freshwater bacterioplankton. ISME J. 7: 137-147.   DOI
5 Glockner FO, Zaichikov E, Belkova N, Denissova L, Pernthaler J, Pernthaler A, Amann R. 2000. Comparative 16S rRNA analysis of lake bacterioplankton reveals globally distributed phylogenetic clusters including an abundant group of actinobacteria. Appl. Environ. Microbiol. 66: 5053-5065.   DOI
6 Warnecke F, Sommaruga R, Sekar R, Hofer JS, Pernthaler J. 2005. Abundances, identity, and growth state of actinobacteria in mountain lakes of different UV transparency. Appl. Environ. Microbiol. 71: 5551-5559.   DOI
7 Eiler A, Zaremba-Niedzwiedzka K, Martinez-Garcia M, McMahon KD, Stepanauskas R, Andersson SGE, Bertilsson S. 2014. Productivity and salinity structuring of the microplankton revealed by comparative freshwater metagenomics. Environ. Microbiol. 16: 2682-2698.   DOI
8 Ghylin TW, Garcia SL, Moya F, Oyserman BO, Schwientek P, Forest KT, et al. 2014. Comparative single-cell genomics reveals potential ecological niches for the freshwater acl Actinobacteria lineage. ISME J. 8: 2503-2516.   DOI
9 Blackall LL, Stratton H, Bradford D, Del Dot T, Sjorup C, Seviour EM, Seviour RJ. 1996. "Candidatus Microthrix parvicella," a filamentous bacterium from activated sludge sewage treatment plants. Int. J. Syst. Bacteriol. 46: 344-346.   DOI
10 Levantesi C, Rossetti S, Thelen K, Kragelund C, Krooneman J, Eikelboom D, et al. 2006. Phylogeny, physiology and distribution of 'Candidatus Microthrix calida', a new Microthrix species isolated from industrial activated sludge wastewater treatment plants. Environ. Microbiol. 8: 1552-1563.   DOI
11 Rossetti S, Tomei MC, Nielsen PH, Tandoi V. 2005. "Microthrix parvicella", a filamentous bacterium causing bulking and foaming in activated sludge systems: a review of current knowledge. FEMS Microbiol. Rev. 29: 49-64.   DOI
12 McIlroy SJ, Kristiansen R, Albertsen M, Karst SM, Rossetti S, Nielsen JL, et al. 2013. Metabolic model for the filamentous 'Candidatus Microthrix parvicella' based on genomic and metagenomic analyses. ISME J. 7: 1161-1172.   DOI
13 Allgaier M, Grossart H-P. 2006. Diversity and seasonal dynamics of Actinobacteria populations in four lakes in northeastern Germany. Appl. Environ. Microbiol. 72: 3489-3497.   DOI
14 Annika CM, Murray AE, Fritsen CH. 2007. Microbiota within the perennial ice cover of Lake Vida, Antarctica. FEMS Microbiol. Ecol. 59: 274-288.   DOI
15 Cho J-C, Giovannoni SJ. 2004. Cultivation and growth characteristics of a diverse group of oligotrophic marine Gammaproteobacteria. Appl. Environ. Microbiol. 70: 432-440.   DOI
16 Connon SA, Giovannoni SJ. 2002. High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl. Environ. Microbiol. 68: 3878-3885.   DOI
17 Davis HC, Guillard RR. 1958. Relative value of ten genera of micro-organisms as foods for oyster and clam larvae. USFWS Fish. Bull. 58: 293-304.
18 Markowitz VM, Mavromatis K, Ivanova NN, Chen I-MA, Chu K, Kyrpides NC. 2009. IMG ER: a system for microbial genome annotation expert review and curation. Bioinformatics 25: 2271-2278.   DOI
19 Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19: 455-477.   DOI
20 Chen I, Markowitz VM, Chu K, Anderson I, Mavromatis K, Kyrpides NC, Ivanova NN. 2013. Improving microbial genome annotations in an integrated database context. PLoS One 8: e54859.   DOI
21 Lowe TM, Eddy SR. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25: 0955-0964.   DOI
22 Finn RD, Clements J, Arndt W, Miller BL, Wheeler TJ, Schreiber F, et al. 2015. HMMER web server: 2015 update. Nucleic Acids Res. 43: W30-W38.   DOI
23 Nawrocki EP, Kolbe DL, Eddy SR. 2009. Infernal 1.0: inference of RNA alignments. Bioinformatics 25: 1335-1337.   DOI
24 Edgar RC. 2007. PILER-CR: fast and accurate identification of CRISPR repeats. BMC Bioinformatics 8: 18.   DOI
25 Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. 2010. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11: 119.   DOI
26 Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. 2008. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9: 75.   DOI
27 Contreras-Moreira B, Vinuesa P. 2013. GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis. Appl. Environ. Microbiol. 79: 7696-7701.   DOI
28 Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, et al. 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62: 716-721.   DOI
29 Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, et al. 2004. ARB: a software environment for sequence data. Nucleic Acids Res. 32: 1363-1371.   DOI
30 Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312-1313.   DOI
31 Alikhan NF, Petty NK, Ben Zakour NL, Beatson SA. 2011. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 12: 402.   DOI
32 Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM. 2007. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int. J. Syst. Evol. Microbiol. 57: 81-91.   DOI
33 Cho JC, Vergin KL, Morris RM, Giovannoni SJ. 2004. Lentisphaera araneosa gen. nov., sp. nov, a transparent exopolymer producing marine bacterium, and the description of a novel bacterial phylum, Lentisphaerae. Environ. Microbiol. 6: 611-621.   DOI
34 Jin L, Huy H, Kim KK, Lee H-G, Kim H-S, Ahn C-Y, Oh H-M. 2013. Aquihabitans daechungensis gen. nov., sp. nov., an actinobacterium isolated from reservoir water. Int. J. Syst. Evol. Microbiol. 63: 2970-2974.   DOI
35 Kim M, Oh HS, Park SC, Chun J. 2014. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int. J. Syst. Evol. Microbiol. 64: 346-351.   DOI
36 Itoh T, Yamanoi K, Kudo T, Ohkuma M, Takashina T. 2011. Aciditerrimonas ferrireducens gen. nov., sp. nov., an iron-reducing thermoacidophilic actinobacterium isolated from a solfataric field. Int. J. Syst. Evol. Microbiol. 61: 1281-1285.   DOI
37 Kurahashi M, Fukunaga Y, Sakiyama Y, Harayama S, Yokota A. 2009. Iamia majanohamensis gen. nov., sp. nov., an actinobacterium isolated from sea cucumber Holothuria edulis, and proposal of Iamiaceae fam. nov. Int. J. Syst. Evol. Microbiol. 59: 869-873.   DOI
38 Matsushika A, Inoue H, Kodaki T, Sawayama S. 2009. Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl. Microbiol. Biotechnol. 84: 37-53.   DOI
39 Richter M, Rossello-Mora R. 2009. Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad. Sci. USA 106: 19126-19131.   DOI