Browse > Article
http://dx.doi.org/10.4014/jmb.1702.02065

Anaerobic Ammonium-Oxidizing Bacteria in Cow Manure Composting  

Wang, Tingting (College of Resources and Environment, Northeast Agricultural University)
Cheng, Lijun (College of Resources and Environment, Northeast Agricultural University)
Zhang, Wenhao (College of Resources and Environment, Northeast Agricultural University)
Xu, Xiuhong (College of Resources and Environment, Northeast Agricultural University)
Meng, Qingxin (College of Resources and Environment, Northeast Agricultural University)
Sun, Xuewei (College of Resources and Environment, Northeast Agricultural University)
Liu, Huajing (College of Resources and Environment, Northeast Agricultural University)
Li, Hongtao (College of Resources and Environment, Northeast Agricultural University)
Sun, Yu (College of Resources and Environment, Northeast Agricultural University)
Publication Information
Journal of Microbiology and Biotechnology / v.27, no.7, 2017 , pp. 1288-1299 More about this Journal
Abstract
Composting is widely used to transform waste into valuable agricultural organic fertilizer. Anaerobic ammonium-oxidizing (anammox) bacteria play an important role in the global nitrogen cycle, but their role in composting remains poorly understood. In the present study, the community structure, diversity, and abundance of anammox bacteria were analyzed using cloning and sequencing methods by targeting the 16S rRNA gene and the hydrazine oxidase gene (hzo) in samples isolated from compost produced from cow manure and rice straw. A total of 25 operational taxonomic units were classified based on 16S rRNA gene clone libraries, and 14 operational taxonomic units were classified based on hzo gene clone libraries. The phylogenetic tree analysis of the 16S rRNA gene and deduced HZO protein sequences from the corresponding encoding genes indicated that the majority of the obtained clones were related to the known anammox bacteria Candidatus "Brocadia," Candidatus "Kuenenia," and Candidatus "Scalindua." The abundances of anammox bacteria were determined by quantitative PCR, and between $2.13{\times}10^5$ and $1.15{\times}10^6$ 16S rRNA gene copies per gram of compost were found. This study provides the first demonstration of the existence of anammox bacteria with limited diversity in cow manure composting.
Keywords
Anammox bacteria; compost; 16S rRNA gene; hzo gene; nitrogen cycle;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Klotz MG, Schmid MC, Strous M, op den Camp HJ, Jetten MS, Hooper AB. 2008. Evolution of an octahaem cytochrome c protein family that is key to aerobic and anaerobic ammonia oxidation by bacteria. Environ. Microbiol. 10: 3150-3163.   DOI
2 Maeda K, Hanajima D, Toyoda S, Yoshida N, Morioka R, Osada T. 2011. Microbiology of nitrogen cycle in animal manure compost. Microb. Biotechnol. 4: 700-709.   DOI
3 De Gannes V, E udoxie G , Dyer D H, H ick ey WJ. 2012. Diversity and abundance of ammonia oxidizing archaea in tropical compost systems. Front. Microbiol. 3: 244.
4 Zeng G, Yu Z, Chen Y, Zhang J, Li H, Yu M, Zhao M. 2011. Response of compost maturity and microbial community composition to pentachlorophenol (PCP)-contaminated soil during composting. Bioresour. Technol. 102: 5905-5911.   DOI
5 Abad M, Noguera P, Puchades R, Maquieira A, Noguera V. 2002. Physico-chemical and chemical properties of some coconut coir dusts for use as a peat substitute for containerised ornamental plants. Bioresour. Technol. 82: 241-245.   DOI
6 Hamersley MR, Lavik G, Woebken D, Rattray JE, Lam P, Hopmans EC, et al. 2007. Anaerobic ammonium oxidation in the Peruvian oxygen minimum zone. Limnol. Oceanogr. 52: 923-933.   DOI
7 Schloss PD, Westcott SL, Ryabin T. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75: 7537-7541.   DOI
8 Yamada T, Araki S, Ikeda-Ohtsubo W, Okamura K, Hiraishi A, Ueda H, et al. 2013. Community structure and population dynamics of ammonia oxidizers in composting processes of ammonia-rich livestock waste. Syst. Appl. Microbiol. 36: 359-367.   DOI
9 Li M, Hong Y, Klotz MG, Gu JD. 2010. A comparison of primer sets for detecting 16S rRNA and hydrazine oxidoreductase genes of anaerobic ammonium-oxidizing bacteria in marine sediments. Appl. Microbiol. Biotechnol. 86: 781-790.   DOI
10 Neef A, Amann R, Schlesner H, Schleifer KH. 1999. Monitoring a widespread bacterial group: in situ detection of planctomycetes with 16S rRNA-targeted probes. Microbiology. 144: 3257-3266.
11 Shimamura M, Nishiyama T, Shigetomo H, Toyomoto T, Kawahara Y, Furukawa K, et al. 2007. Isolation of a multiheme protein with features of a hydrazine-oxidizing enzyme from an anaerobic ammonium-oxidizing enrichment culture. Appl. Environ. Microbiol. 73: 1065-1072.   DOI
12 Muyzer G, de Waal EC, Uitterlinden AG. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695.
13 Neef A, Amann R, Schlesner H, Schleifer KH. 1998. Monitoring a widespread bacterial group: in situ detection of planctomycetes with 16S rRNA-targeted probes. Microbiology 144: 3257-3266.   DOI
14 Brosius J, Dull TJ, Noller HF. 1978. Complete nucleotide sequence of a 23s ribosomal RNA gene from Escherichia coli. Proc. Natl. Acad. Sci. USA 75: 4801-4805.   DOI
15 Li M, Hong YG, Cao HL, Gu JD. 2013. Community structures and distribution of anaerobic ammonium oxidizing and nirS-encoding nitrite-reducing bacteria in surface sediments of the South China Sea. Microb. Ecol. 66: 281-296.   DOI
16 Kartal B, Niftrik LV, Rattray J, Van De Vossenberg J, Schmid MC, Damste JS, et al. 2008. Candidatus 'Brocadia fulgida': an autofluorescent anaerobic ammonium oxidizing bacterium. FEMS Microbiol. Ecol. 63: 46-55.   DOI
17 Schmidt I, Sliekers O, Schmid M, Cirpus I, Strous M, Bock E, et al. 2002. Aerobic and anaerobic ammonia oxidizing bacteria - competitors or natural partners? FEMS Microbiol. Ecol. 39: 175-181.
18 Schmid M, Walsh K, Webb R, Rijpstra WIC, van de Pas-Schoonen K. 2003. Candidatus "Scalindua brodae", sp. nov., Candidatus "Scalindua wagneri", sp. nov., the two new species of anaerobic ammonium oxidizing bacteria. Syst. Appl. Microbiol. 26: 529-538.   DOI
19 Kartal B, Rattray J, Niftrik LAV, Vossenberg JVD, Schmid MC, Webb RI, et al. 2007. Candidatus "Anammoxoglobus propionicus" a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria. Syst. Appl. Microbiol. 30: 39-49.   DOI
20 Quan ZX, Rhee SK, Zuo JE, Yang Y, Bae JW, Park JR, et al. 2008. Diversity of ammonium-oxidizing bacteria in a granular sludge anaerobic ammonium-oxidizing (anammox) reactor. Environ. Microbiol. 10: 3130-3139.   DOI
21 Schmid MC, Nils RP, Jack VDV, Kuypers MMM, Lavik G, Petersen J, et al. 2007. Anaerobic ammonium-oxidizing bacteria in marine environments: widespread occurrence but low diversity. Environ. Microbiol. 9: 1476-1484.   DOI
22 Kuypers MM, Lavik G, Woebken D, Schmid M, Fuchs BM, Amann R, et al. 2005. Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation. Proc. Natl. Acad. Sci. USA 102: 6478-6483.   DOI
23 Yoshinaga I, Amano T, Yamagishi T, Okada K, Ueda S, Sako Y, et al. 2011. Distribution and diversity of anaerobic ammonium oxidation (anammox) bacteria in the sediment of a eutrophic freshwater lake, Lake Kitaura, Japan. Microbes Environ. 26: 189-197.   DOI
24 Schubert CJ, Durisch-Kaiser E, Wehrli B, Thamdrup B, Lam P, Kuypers MMM. 2006. Anaerobic ammonium oxidation in a tropical freshwater system (Lake Tanganyika). Environ. Microbiol. 8: 1857-1863.   DOI
25 Sun W, Xu MY, Wu WM, Guo J, Xia CY, Sun GP, et al. 2013. Molecular diversity and distribution of anammox community in sediments of the Dongjiang River, a drinking water source of Hong Kong. J. Appl. Microbiol. 116: 464-476.
26 Humbert S, Tarnawski S, Fromin N, Mallet MP, Aragno M, Zopfi J. 2010. Molecular detection of anammox bacteria in terrestrial ecosystems: distribution and diversity. ISME J. 4: 450-454.   DOI
27 Hu BL, Rush D, van der Biezen E, Zheng P, van Mullekom M, Schouten S, et al. 2011. New anaerobic, ammonium-oxidizing community enriched from peat soil. Appl. Environ. Microbiol. 77: 966-971.   DOI
28 Mahimairaja S, Bolan NS, Hedley MJ, Macgregor AN. 1994. Losses and transformation of nitrogen during composting of poultry manure with different amendments: an incubation experiment. Bioresour. Technol. 47: 265-273.   DOI
29 Bai R, Chen X, He JZ, Shen JP, Zhang LM. 2015. Erratum to: Candidatus brocadia and Candidatus kuenenia predominated in anammox bacterial community in selected Chinese paddy soils. J. Soil Sediment. 15: 1-10.   DOI
30 Wang J, Gu JD. 2013. Dominance of Candidatus scalindua species in anammox community revealed in soils with different duration of rice paddy cultivation in northeast China. Appl. Microbiol. Biotechnol. 97: 1785-1798.   DOI
31 Schmid MC, Hooper AB, Klotz MG, Woebken D, Lam P, Kuypers MMM, et al. 2008. Environmental detection of octahaem cytochrome c hydroxylamine/hydrazine oxidoreductase genes of aerobic and anaerobic ammonium-oxidizing bacteria. Environ. Microbiol. 10: 3140-3149.   DOI
32 Jetten MS, Lv N, Strous M, Kartal B, Keltjens JT, Hj ODC. 2009. Biochemistry and molecular biology of anammox bacteria. Crit. Rev. Biochem. Mol. 44: 65-84.   DOI
33 Mulder A, Graaf AAVD, Robertson LA, Kuenen JG. 1995. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol. Ecol. 16: 177-188.   DOI
34 Kimberly AE, Roberts MG. 1905. A method for the direct determination of organic nitrogen by the Kjeldahl process. Public Health Pap. Rep. 31: 109-122.
35 Li M, Gu JD. 2011. Advances in methods for detection of anaerobic ammonium oxidizing (anammox) bacteria. Appl. Microbiol. Biotechnol. 90: 1241-1252.   DOI
36 Schmid M, Twachtmann U, Klein M, Strous M, Juretschko S, Jetten M, et al. 2000. Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation. Syst. Appl. Microbiol. 23: 309-320.
37 Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013.MEGA6: molecular evolutionary genetics analysis version6.0. Mol. Biol. Evol. 30: 2725-2729.   DOI
38 Hirsch MD, Long ZT, Song B. 2011. Anammox bacterial diversity in various aquatic ecosystems based on the detection of hidrazine oxidase genes (hzoA/ hzoB). Microb. Ecol. 61: 264-276.   DOI
39 Good IJ. 1953. The population frequencies of species and the estimation of population parameters. Biometrika 40: 237-264.   DOI
40 Mathur SP, Owen G, Dinel H, Schnitzer M. 1993. Determination of compost bio maturity: literature review. Biol. Agric. Hortic. 10: 65-85.   DOI
41 Hu BL, Shen LD, Xu XY, Zheng P, Hu AH, Chen TT, et al. 2011. Anaerobic ammonium oxidation (anammox) in different natural ecosystems. Biochem. Soc. Trans. 39: 1811-1816.   DOI
42 Jaeschke A, Op den Camp HJ, Harhangi MH, Klimiuk A, Hopmans EC, Jetten MS, et al. 2009. 16S rRNA gene and lipid biomarker evidence for anaerobic ammonium-oxidizing bacteria (anammox) in California and Nevada hot springs. FEMS Microbiol. Ecol. 67: 343-350.   DOI
43 Li H, Chen S, Mu BZ, Gu JD. 2010. Molecular detection of anaerobic ammonium-oxidizing (anammox) bacteria in hightemperature petroleum reservoirs. Microb. Ecol. 60: 771-783.   DOI
44 Byrne N, Strous M, Crepeau V, Kartal B, Birrien JL, Schmid M, et al. 2009. Presence and activity of anaerobic ammoniumoxidizing bacteria at deep-sea hydrothermal vents. ISME J. 3: 117-123.   DOI
45 Juretschko S, Timmermann G, Schmid M, Schleifer KH, Pommerening-Roser A, Koops HP, et al. 1998. Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations. Appl. Environ. Microbiol. 64: 3042-3051.