Browse > Article

Phylogenetic Diversity of Bacteria in an Earth-Cave in Guizhou Province, Southwest of China  

Zhou, Jun-Pei (Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University)
Gu, Ying-Qi (Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University)
Zou, Chang-Song (Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University)
Mo, Ming-He (Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University)
Publication Information
Journal of Microbiology / v.45, no.2, 2007 , pp. 105-112 More about this Journal
Abstract
The objective of this study was to analyze the phylogenetic composition of bacterial community in the soil of an earth-cave (Niu Cave) using a culture-independent molecular approach. 16S rRNA genes were amplified directly from soil DNA with universally conserved and Bacteria-specific rRNA gene primers and cloned. The clone library was screened by restriction fragment length polymorphism (RFLP), and representative rRNA gene sequences were determined. A total of 115 bacterial sequence types were found in 190 analyzed clones. Phylogenetic sequence analyses revealed novel 16S rRNA gene sequence types and a high diversity of putative bacterial community. Members of these bacteria included Proteobacteria (42.6%), Acidobacteria (18.6%), Planctomycetes (9.0 %), Chloroflexi (Green nonsulfur bacteria, 7.5%), Bacteroidetes (2.1%), Gemmatimonadetes (2.7%), Nitrospirae (8.0%), Actinobacteria (High G+C Gram-positive bacteria, 6.4%) and candidate divisions (including the OP3, GN08, and SBR1093, 3.2%). Thirty-five clones were affiliated with bacteria that were related to nitrogen, sulfur, iron or manganese cycles. The comparison of the present data with the data obtained previously from caves based on 16S rRNA gene analysis revealed similarities in the bacterial community components, especially in the high abundance of Proteobacteria and Acidobacteria. Furthermore, this study provided the novel evidence for presence of Gemmatimonadetes, Nitrosomonadales, Oceanospirillales, and Rubrobacterales in a karstic hypogean environment.
Keywords
16S rRNA gene; karst; cave; bacterial community; microbial ecology;
Citations & Related Records

Times Cited By Web Of Science : 13  (Related Records In Web of Science)
Times Cited By SCOPUS : 12
연도 인용수 순위
1 Bottomley, P.J. 1992. Ecology of Bradyrhizobium, and Gluconoacetobacter diazotrophicusobium, p. 293-348. In G. Stacey, R.H. Burris and H.J. Evans (eds.), Biological Nitrogen Fixation. Chapman, and Hall New York, London, UK
2 Groth, I. and C. Saiz-Jimenez. 1999. Actinomycetes in hypogean environments. Geomicrobiol. J. 16, 1-8   DOI
3 Holmes, A.J., N.A. Tujula, M. Holley, A. Contos, J.M. James, P. Rogers, and M.R. Gillings. 2001. Phylogenetic structure of unusual aquatic microbial formations in Nullarbor Caves, Australia. Environ. Microbiol. 3, 256-264n   DOI   ScienceOn
4 Juretschko, S., A. Loy, A. Lehner, and M. Wagner. 2002. The microbial community composition of a nitrifying-denitrifying activated sludge from an industrial sewage treatment plant analyzed by the full-cycle rRNA approach. Syst. Appl. Microbiol. 25, 84-99   DOI   ScienceOn
5 Lane, D.J. 1991. 16S/23S rRNA sequencing, p. 115-175. In E. Stackebrandt, and M. Goodfellow (eds.), Nucleic Acid Techniques in Bacterial. Wiley, New York, USA
6 Liesack, W. and K. Finster. 1994. Phylogenetic analysis of five strains of Gram-negative, obligately anaerobic, sulfur-reducing bacteria, and description of Desulfuromusa gen. nov., including Desulfuromusa kysingii sp. nov., Desulfuromusa bakii sp. nov., and Desulfuromusa succinoxidans sp. nov. Int. J. Syst. Bacteriol. 44, 753-758   DOI   ScienceOn
7 Liesack, W., P.H. Janssen, F.A. Rainey, N. Ward-Rainey, and E. Stackebrandt. 1997. Microbial diversity in soil, the need for a combined approach using molecular, and cultivation techniques, p. 375-439. In J.D. van Elsas, J.T. Trevors, and E.M.H. Wellington (eds.), Modern Soil Microbiology. Marcel Dekker, New York, USA
8 Saitou, N., M. Nei, and L.S. Lerman. 1987. The neighbor-joining method, a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425   PUBMED
9 Schirmer, A., R. Gadkari, C.D. Reeves, F. Ibrahim, E.F. DeLong, and C.R. Hutchinson. 2005. Metagenomic analysis reveals diverse polyketide synthase gene clusters in microorganisms associated with the marine sponge Discodermia dissoluta. Appl. Environ. Microbiol. 71, 4840-4849   DOI   ScienceOn
10 Schmid, M., U. Twachtmann, M. Klein, M. Strous, S. Juretschko, and M. Jetten. 2000. Molecular evidence for a genus-level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation. System. Appl. Microbiol. 23, 93-106   DOI   ScienceOn
11 Huang, L.N., H. Zhou, S. Zhu, and L.H. Qu. 2004. Phylogenetic. diversity of bacteria in the leachate of a full-scale recirculating landfill. FEMS Microbiol. Ecol. 50, 175-183   DOI   ScienceOn
12 Quaiser, A., T. Ochsenreiter, C. Lanz, S. C. Schuster, A. H. Treusch, J. Eck, and C. Schleper. 2003. Acidobacteria form a coherent but highly diverse group within the bacterial domain: evidence from environmental genomics. Mol. Microbiol. 50, 563-575   DOI   ScienceOn
13 Vlasceanu, L., S.M. Sarbu, A.S. Engel, and B.K. Kinkle. 2000. Acidic cave-wall biofilms located in the Frasassi Gorge, Italy. Geomicrobiol. J. 17, 125-140   DOI   ScienceOn
14 Kimura, M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111-120   DOI
15 Head, I.M., J.R. Saunders, and R.W. Pickup. 1998. Microbial evolution, diversity, and ecology, a decade of ribosomal RNA analysis of uncultivated microorganisms. Microb. Ecol. 35, 1-21   DOI
16 Laiz, L., I. Groth, P. Schumann, F. Zezza, A. Felske, B. Hermosin, and C. Saiz-Jimenez. 2000. Microbiology of the stalactites from Grotta dei Cervi, Porto Badisco, Italy. Int. Microbiol. 3, 25-30   PUBMED
17 Ozeki, S., I. Baba, N. Takaya, and H. Shoun. 2001. A novel C1- using denitrifier Alcaligenes sp. STC1, and its genes for coppercontaining nitrite reductase, and azurin. Biosci. Biotechnol. Biochem. 65, 1206-12101   DOI   ScienceOn
18 Groth, I., R.B. Vetterman, Schuetzte, P. Schumann, and C. Saiz- Jimenez. 1999. Actinomycetes in karstic caves of northern Spain Altamira, and Tito Bustillo. J. Microbiol. Methods 36, 115-122   DOI   ScienceOn
19 Suzuki, I., U. Dular, and S.C. Kwok. 1974. Ammonia or ammonium ion as substrate for oxidation by Nitrosomonas cells, and extracts. J. Bacteriol. 120, 556-558   PUBMED
20 Engel, A.S., M.I. Porter, B.K. Kinkle, and T.C. Kane. 2001. Ecological assessment, and geological significance of microbial communities from Cesspool Cave, Virginia. Geomicrobiol. J. 18, 259-274   DOI
21 Kumar, S., K. Tamura, and M. Nei. 2004. MEGA3, Integrated software for molecular evolutionary genetics analysis, and sequence alignment. Briefings in Bioinformatics 5, 150-163   DOI   ScienceOn
22 Asami, H., M. Aida, and K. Watanabe. 2005. Accelerated sulfur cycle in coastal marine sediment beneath areas of intensive shellfish aquaculture. Appl. Environ. Microbiol. 716, 2925-2933
23 Ghiorse, W.C. and P. Hirsch. 1979. An ultrastructural study of iron, and manganese deposition associated with extracellular polymers of Pedomicrobium-like budding bacteria. Arch. Microbiol. 123, 213-226   DOI
24 Peck, S.B. 1986. Bacterial deposition of iron, and manganese oxides in North American caves. NSS. Bull 48, 26-30
25 Jetten, M., M. Wagner, J. Fuerst, M. van Loosdrecht, G. Kuenen, and M. Strous. 2001. Microbiology, and application of the anaerobic ammonium oxidation 'anamox' process. Curr. Opin. Biotechnol. 12, 283-288   DOI   ScienceOn
26 Maidak, B.L., G.J. Olsen, N. Larsen, R. Overbeek, M.J. Mc- Caughey, and C.R. Woese. 1997. The RDP ribosomal database project. Nucleic Acids Res. 25, 109-110   DOI
27 Sarbu S.M., T.C. Kane, and B.K. Kinkle. 1996. A chemoautotrophically based cave ecosystem. Science 272, 1953-1954   DOI   ScienceOn
28 Schabereiter-Gurtner, C., C. Saiz-Jimenez, G. Pinar, W. Lubitz, and S. Rolleke. 2002a. Altamira Cave Paleolithic paintings harbour partly unknown bacterial communities. FEMS Microbiol. Lett. 211, 7-11   DOI
29 Canaveras, J.C., S. Sanchez-Moral, V. Soler, and C. Saiz-Jimenez. 2001. Microorganisms, and microbially induced fabrics in cave walls. Geomicrobiol. J. 18, 223-240   DOI
30 Engel, A.S., M.L. Porter, L.A. Stern, S. Quinlan, and P.C. Bennett. 2004. Bacterial diversity, and ecosystem function of filamentous microbial mats from aphotic (cave) sulfidic springs dominated by chemolithoautotrophic 'Epsilonproteobacteria'. FEMS Microbiol.Ecol. 51, 31-53,   DOI   ScienceOn
31 Zhang Y.J., M.D. Yang, and C.H. He. 1992. Karst geomorphology, and environmental implication in Guizhou. Cave Science 19, 13-20
32 Cramm, R., R.A. Siddiqui, and B. Friedrich. 1997. Two isofunctional nitric oxide reductases in Alcaligenes eutrophus H16. J. Bacteriol. 179, 6769-6777   DOI   PUBMED
33 Northup, D.E., C.N. Dahm, L.A. Melim, M.N. Spilde, L.J. Crossey, and K.H. Lavoie. 2000. Evidence for geomicrobiological interactions in Guadalupe Caves. J. Caves Kars.t Stud. 62, 80-90
34 Schabereiter-Gurtner, C., C. Saiz-Jimenez, G. Pin.ar, W. Lubitz, and S. Rolleke. 2002b. Phylogenetic 16S rRNA analysis reveals the presence of complex, and partly unknown bacterial communities in Tito Bustillo Cave, Spain, and on its Paleolithic paintings. Environ. Microbiol. 4, 392-400   DOI   ScienceOn
35 Amann, R.I., W. Ludwig, and K.H. Schleifer. 1995. Phylogenetic identification, and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143-169   PUBMED
36 Hiorns, W.D., R.C. Hastings, I.M. Head, G.R. Hall, A.J. Mc- Carthy, J.R. Saunders, and R.W. Pickup. 1995. Amplification of 16S ribosomal RNA genes of autotrophic ammonia-oxidizing bacteria demonstrates the ubiquity of Nitrosospiras in the environment. Microbiology 141, 2793-2800   DOI   ScienceOn
37 Altschul, S.F., W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215, 403-410   DOI   PUBMED
38 Groth, I., P. Schumann, L. Laiz, S. Sanchez-Moral, J.C. Canaveras, and C. Saiz-Jimenez. 2001. Geomicrobiological study of the Grotta dei Cervi, Porto Badisco, Italy. Geomicrobiol. J. 18, 241-258   DOI
39 Kuske, C.R., S.M. Barns, and J.D. Busch. 1997. Diverse uncultivated bacterial groups from soils of the arid southwestern United States that are present in many geographic regions. Appl. Environ. Microbiol. 63, 3614-3621   PUBMED
40 Northup, D.E., S.M. Barns, L.E. Yu, M.N. Spilde, R.T. Schelble, and K.E. Dano. 2003. Diverse microbial communities inhabiting ferromanganese deposits in Lechuguilla and Spider Caves. Environ. Microbiol. 5, 1071-1086   DOI   ScienceOn
41 Glockner, F.O., M. Kube, M. Bauer, H. Teeling, T. Lombardot, W. Ludwig, D. Gade, A. Beck, K. Borzym, K. Heitmann, R. Rabus, H. Schlesner, R. Amann, and R. Reinhardt. 2003. Complete genome sequence of the marine planctomycete Pirellula sp. strain 1. PNAS 14, 8298-8303
42 Ludwig, W., S.H. Bauer, M. Bauer, I. Held, I. Kirchhof, R. Schulze, and K.H. Schleifer. 1997. Detection, and in situ identification of representatives of a widely distributed new bacterial phylum. FEMS Microbiol. Lett. 153, 181-190   DOI
43 Northup, D.E. and K.H. Lavoie. 2001. Geomicrobiology of caves, a review. Geomicrobiol. J. 18, 199-222   DOI
44 Neef, A., R. Amann, H. Schlesner, and K.H. Schleifer. 1998. Monitoring a widespread bacterial group, in situ detection of planctomycetes with 16S rRNA-targeted probes. Microbiology 144, 3257-3266   DOI   ScienceOn
45 Schabereiter-Gurtner, C., C. Saiz-Jimenez, G. Pinar, W. Lubitz, and S. Rolleke. 2003. Phylogenetic diversity of bacteria associated with Paleolithic paintings, and surrounding rock walls in two Spanish caves Llonin, and La Garma. FEMS Microbiol. Ecol. 1606, 1-13
46 Chen, W.M., S. Laevens, T.M. Lee, T. Coenye, P. De Vos, M. Mergeay, and P. Vandamme. 2001. Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species, and sputum of a cystic fibrosis patient. Int. J. Syst. Evol. Microbiol. 51, 1729-1735   DOI   PUBMED   ScienceOn
47 Gillieson, D. 1996. Caves, processes, development, and management, p. 324. Blackwell Publishers, Oxford, UK
48 Hose L.D., A.N. Palmer, M.V. Palmer, D.E. Northup, P.J. Boston, and H.R. Duchene. 2000. Microbiology, and geochemistry in a hydrogen-sulphide-rich karst environment. Chem. Geol. 169, 399-423   DOI   ScienceOn
49 Laiz, L., I. Groth, I. Gonzalez, and C. Saiz-Jimenez. 1999. Microbiological study of the dripping water in Altamira Cave Santillana del Mar, Spain. J. Microbiol. Methods 36, 129-138   DOI   ScienceOn
50 Moore, G.W. 1981. Manganese deposition in limestone caves, p. 642-645. In B.F. Beck (eds.), Proceedings 8th International Congress of Speleology, II. Kentucky, USA
51 Smart, P.L, A.C. Waltham, M.D. Yang, and Y.J. Zhang. 1986. Karst geomorphology of western Guizhou, China. Cave Science 13, 89-104
52 Gonzalez, I., L. Laiz, B. Hermosin, B. Guerrero, C. Incerti, and C. Saiz-Jimenez. 2003. Microbial communities of the rock paintings of Atlanterra shelter South Spain. J. Microbiol. Methods 36, 123-127   DOI   ScienceOn
53 Hugenholtz, P., M.B. Goebel, and N.R. Pace. 1998. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 180, 4765-4774   PUBMED
54 Nealson, K.H. and D. Saffarini. 1994. Iron, and manganese in anaerobic respiration: environmental significance, physiology, and regulation. Ann. Rev. Microbiol. 48, 311-343   DOI   ScienceOn
55 Burrell, P.C., J. Keller, and L.L. Blackall. 1998. Microbiology of a nitrite-oxidizing bioreactor. Appl. Environ. Microbiol. 64, 1878- 1883   PUBMED
56 Cunningham, K.I., D.E. Northup, R.M. Pollastro, W.G. Wright, and E.J. LaRock. 1995. Bacteria, fungi, and biokarst in Lechuguilla Cave, Carlsbad Caverns National Park, New Mexico. Environ. Geol. 25, 2-8   DOI
57 Thompson, J.D., T.J. Gibson, F. Plewniak, F. Jeanmougin, and D.G. Higgens. 1997. The Clustal X windows interface, flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24, 4876-4882