• Title/Summary/Keyword: 130 nm CMOS

Search Result 57, Processing Time 0.029 seconds

High-sensitivity NIR Sensing with Stacked Photodiode Architecture

  • Hyunjoon Sung;Yunkyung Kim
    • Current Optics and Photonics
    • /
    • v.7 no.2
    • /
    • pp.200-206
    • /
    • 2023
  • Near-infrared (NIR) sensing technology using CMOS image sensors is used in many applications, including automobiles, biological inspection, surveillance, and mobile devices. An intuitive way to improve NIR sensitivity is to thicken the light absorption layer (silicon). However, thickened silicon lacks NIR sensitivity and has other disadvantages, such as diminished optical performance (e.g. crosstalk) and difficulty in processing. In this paper, a pixel structure for NIR sensing using a stacked CMOS image sensor is introduced. There are two photodetection layers, a conventional layer and a bottom photodiode, in the stacked CMOS image sensor. The bottom photodiode is used as the NIR absorption layer. Therefore, the suggested pixel structure does not change the thickness of the conventional photodiode. To verify the suggested pixel structure, sensitivity was simulated using an optical simulator. As a result, the sensitivity was improved by a maximum of 130% and 160% at wavelengths of 850 nm and 940 nm, respectively, with a pixel size of 1.2 ㎛. Therefore, the proposed pixel structure is useful for NIR sensing without thickening the silicon.

Design of 77 GHz Radar Transmitter Using 13 GHz CMOS Frequency Synthesizer and Multiplier (13 GHz CMOS 주파수 합성기와 체배기를 이용한 77 GHz 레이더 송신기 설계)

  • Song, Ui-Jong;Kang, Hyun-Sang;Choi, Kyu-Jin;Cui, Chenglin;Kim, Seong-Kyun;Kim, Byung-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.11
    • /
    • pp.1297-1306
    • /
    • 2012
  • This work presents a 77 GHz radar transmitter for the automotive radar system. An integrated 13 GHz frequency synthesizer fabricated using 130 nm RF CMOS process drives a commercial W-band compound semiconductor monolithic multifunction amplifier(MPA), which includes a frequency multiplier by six to generate 77 GHz transmitting signal. The 13 GHz frequency synthesizer includes a high efficiency injection buffer of 4 dBm output power to drive the MPA. The output power of 77 GHz radar transmitter is higher than 13.99 dBm and the magnitude of the reference spur relative to the carrier is -36.45 dBc. The phase noise is -81 dBc/Hz at 1 MHz offset frequency from the carrier.

A CMOS Wideband RF Energy Harvester Employing Tunable Impedance Matching Network for Video Surveillance Disposable IoT Applications (가변 임피던스 매칭 네트워크를 이용한 영상 감시 Disposable IoT용 광대역 CMOS RF 에너지 하베스터)

  • Lee, Dong-gu;Lee, Duehee;Kwon, Kuduck
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.2
    • /
    • pp.304-309
    • /
    • 2019
  • This paper presents a CMOS RF-to-DC converter for video surveillance disposable IoT applications. It widely harvests RF energy of 3G/4G cellular low-band frequency range by employing a tunable impedance matching network. The proposed converter consists of the differential-drive cross-coupled rectifier and the matching network with a 4-bit capacitor array. The proposed converter is designed using 130-nm standard CMOS process. The designed energy harvester can rectify the RF signals from 700 MHz to 900 MHz. It has a peak RF-to-DC conversion efficiency of 72.25%, 64.97%, and 66.28% at 700 MHz, 800 MHz, and 900 MHz with a load resistance of 10kΩ, respectively.

Improved Responsivity of an a-Si-based Micro-bolometer Focal Plane Array with a SiNx Membrane Layer

  • Joontaek, Jung;Minsik, Kim;Chae-Hwan, Kim;Tae Hyun, Kim;Sang Hyun, Park;Kwanghee, Kim;Hui Jae, Cho;Youngju, Kim;Hee Yeoun, Kim;Jae Sub, Oh
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.366-370
    • /
    • 2022
  • A 12 ㎛ pixel-sized 360 × 240 microbolometer focal plane array (MBFPA) was fabricated using a complementary metaloxide-semiconductor (CMOS)-compatible process. To release the MBFPA membrane, an amorphous carbon layer (ACL) processed at a low temperature (<400 ℃) was deposited as a sacrificial layer. The thermal time constant of the MBFPA was improved by using serpentine legs and controlling the thickness of the SiNx layers at 110, 130, and 150 nm on the membrane, with response times of 6.13, 6.28, and 7.48 msec, respectively. Boron-doped amorphous Si (a-Si), which exhibits a high-temperature coefficient of resistance (TCR) and CMOS compatibility, was deposited on top of the membrane as an IR absorption layer to provide heat energy transformation. The structural stability of the thin SiNx membrane and serpentine legs was observed using field-emission scanning electron microscopy (FE-SEM). The fabrication yield was evaluated by measuring the resistance of a representative pixel in the array, which was in the range of 0.8-1.2 Mohm (as designed). The yields for SiNx thicknesses of SiNx at 110, 130, and 150 nm were 75, 86, and 86%, respectively.

Design of a Two-stage Differential cascode Power Amplifier with a Temperature Compensation function of High PAE with 2.4 GHz (2.4GHz 대역폭을 갖는 온도 보상 기능 탑재 고전력부가효율의 2 단 차동 캐스코드 전력증폭기 설계 )

  • Joon Hyung Park;Jisung Jang;Howon Kim;Kang-Yoon Lee
    • Transactions on Semiconductor Engineering
    • /
    • v.2 no.3
    • /
    • pp.6-12
    • /
    • 2024
  • This paper presents a study on a 2.4GHz differential cascode power amplifier(PA) fabricated using a 130nm CMOS process. This PA is designed for wireless power transmission applications and consists of two differential stages with custom-designed balun transformers for single-ended output. Balun transformers are utilized not only for the output stage but also for power match-ing between each stage. Additionally, a bias circuit with temperature compensation capability is added to maintain stable bias voltage in the 2.4GHz frequency band. As a result, it achieves an output power of 21.75 dBm with a power-added efficiency(PAE) of 40.9% at TT/40℃.

A CMOS Outphasing Transmitter Using Two Wideband Phase Modulators

  • Lee, Sung-Ho;Kim, Ki-Hyun;Song, Jae-Hoon;Lee, Kang-Yoon;Nam, Sang-Wook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.4
    • /
    • pp.247-255
    • /
    • 2011
  • This paper describes a CMOS outphasing transmitter using two wideband phase modulators. The proposed architecture can simplify the overall outphasing transmitter architecture using two-point phase modulation in phase-locked loop, which eliminates the necessity digital-to-analog converters, filters, and mixers. This architecture is verified with a WCDMA signal at 1.65 GHz. The prototype is fabricated in standard 130 nm CMOS technology. The measurement results satisfied the spectrum mask and 4.9% EVM performance.

Wafer-Level Three-Dimensional Monolithic Integration for Intelligent Wireless Terminals

  • Gutmann, R.J.;Zeng, A.Y.;Devarajan, S.;Lu, J.Q.;Rose, K.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.4 no.3
    • /
    • pp.196-203
    • /
    • 2004
  • A three-dimensional (3D) IC technology platform is presented for high-performance, low-cost heterogeneous integration of silicon ICs. The platform uses dielectric adhesive bonding of fully-processed wafer-to-wafer aligned ICs, followed by a three-step thinning process and copper damascene patterning to form inter-wafer interconnects. Daisy-chain inter-wafer via test structures and compatibility of the process steps with 130 nm CMOS sal devices and circuits indicate the viability of the process flow. Such 3D integration with through-die vias enables high functionality in intelligent wireless terminals, as vertical integration of processor, large memory, image sensors and RF/microwave transceivers can be achieved with silicon-based ICs (Si CMOS and/or SiGe BiCMOS). Two examples of such capability are highlighted: memory-intensive Si CMOS digital processors with large L2 caches and SiGe BiCMOS pipelined A/D converters. A comparison of wafer-level 3D integration 'lith system-on-a-chip (SoC) and system-in-a-package (SiP) implementations is presented.

A 60-GHz LTCC SiP with Low-Power CMOS OOK Modulator and Demodulator

  • Byeon, Chul-Woo;Lee, Jae-Jin;Kim, Hong-Yi;Song, In-Sang;Cho, Seong-Jun;Eun, Ki-Chan;Lee, Chae-Jun;Park, Chul-Soon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.4
    • /
    • pp.229-237
    • /
    • 2011
  • In this paper, a 60 GHz LTCC SiP with low-power CMOS OOK modulator and demodulator is presented. The 60 GHz modulator is designed in a 90-nm CMOS process. The modulator uses a current reuse technique and only consumes 14.4-mW of DC power in the on-state. The measured data rate is up to 2 Gb/s. The 60 GHz OOK demodulator is designed in a 130nm CMOS process. The demodulator consists of a gain boosting detector and a baseband amplifier, and it recovers up to 5 Gb/s while consuming low DC power of 14.7 mW. The fabricated 60 GHz modulator and demodulator are fully integrated in an LTCC SiP with 1 by 2 patch antenna. With the LTCC SiP, 648 Mb/s wireless video transmission was successfully demonstrated at wireless distance of 20-cm.

Design of Q-Band LC VCO and Injection Locking Buffer 77 GHz Automotive Radar Sensor (77 GHz 자동차용 레이더 센서 응용을 위한 Q-밴드 LC 전압 제어 발진기와 주입 잠금 버퍼 설계)

  • Choi, Kyu-Jin;Song, Jae-Hoon;Kim, Seong-Kyun;Cui, Chenglin;Nam, Sang-Wook;Kim, Byung-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.3
    • /
    • pp.399-405
    • /
    • 2011
  • In this paper, we present the design of Q-band LC VCO and injection locking buffer for 77 GHz automotive radar sensor using 130 nm RF CMOS process. To improve the phase noise characteristic of LC tank, the transmission line is used. The negative resistance by the active device cross-coupled pair of buffer is used for high output power, with or without oscillation of buffer. The measured phase noise is -102 dBc/Hz at 1 MHz offset frequency and tuning range is 34.53~35.07 GHz. The output power is higher than 4.1 dBm over entire tuning range. The fabricated chip size is $510{\times}130\;um^2$. The power consumption of LC VCO is 10.8 mW and injection locking buffer is 50.4 mW from 1.2 V supply.

Automatic Layout Decomposition for DPT (DPT를 위한 자동 레이아웃 분리)

  • Moon, Dong-Sun;Shin, Hyun-Chul;Shin, Jae-Pil
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.4
    • /
    • pp.124-130
    • /
    • 2008
  • Automatic layout decomposition techniques have been developed for double patterning technology (DPT). As CMOS manufacturing process scales down to 45nm and below, lithography resolution needs to be improved. DPT has been proposed to enhance the limitation of conventional lithography, by decomposing the layout design into two masks to relax the minimum spacing requirement. However, it is not always possible to decompose a layout into two masks. We have developed new automatic stitching techniques to resolve this problem. Experimental results show that the suggested techniques are promising in decomposing layouts for DPT.