• 제목/요약/키워드: 1/n

검색결과 53,292건 처리시간 0.07초

ON THE RATES OF THE ALMOST SURE CONVERGENCE FOR SELF-NORMALIZED LAW OF THE ITERATED LOGARITHM

  • Pang, Tian-Xiao
    • 대한수학회보
    • /
    • 제48권6호
    • /
    • pp.1137-1146
    • /
    • 2011
  • Let {$X_i$, $i{\geq}1$} be a sequence of i.i.d. nondegenerate random variables which is in the domain of attraction of the normal law with mean zero and possibly infinite variance. Denote $S_n={\sum}_{i=1}^n\;X_i$, $M_n=max_{1{\leq}i{\leq}n}\;{\mid}S_i{\mid}$ and $V_n^2={\sum}_{i=1}^n\;X_i^2$. Then for d > -1, we showed that under some regularity conditions, $$\lim_{{\varepsilon}{\searrow}0}{\varepsilon}^2^{d+1}\sum_{n=1}^{\infty}\frac{(loglogn)^d}{nlogn}I\{M_n/V_n{\geq}\sqrt{2loglogn}({\varepsilon}+{\alpha}_n)\}=\frac{2}{\sqrt{\pi}(1+d)}{\Gamma}(d+3/2)\sum_{k=0}^{\infty}\frac{(-1)^k}{(2k+1)^{2d+2}}\;a.s.$$ holds in this paper, where If g denotes the indicator function.

THE LATTICE DISTRIBUTIONS INDUCED BY THE SUM OF I.I.D. UNIFORM (0, 1) RANDOM VARIABLES

  • PARK, C.J.;CHUNG, H.Y.
    • 대한수학회지
    • /
    • 제15권1호
    • /
    • pp.59-61
    • /
    • 1978
  • Let $X_1$, $X_2$, ${\cdots}$, $X_n$ be i.i.d. uniform (0,1) random variables. Let $f_n(x)$ denote the probability density function (p.d.f.) of $T_n={\sum}^n_{i=1}X_i$. Consider a set S(x ; ${\delta}$) of lattice points defined by S(x ; ${\delta}$) = $x{\mid}x={\delta}+j$, j=0, 1, ${\cdots}$, n-1, $0{\leq}{\delta}{\leq}1$} The lattice distribution induced by the p.d.f. of $T_n$ is defined as follow: (1) $f_n^{(\delta)}(x)=\{f_n(x)\;if\;x{\in}S(x;{\delta})\\0\;otherwise.$. In this paper we show that $f_n{^{(\delta)}}(x)$ is a probability function thus we obtain a family of lattice distributions {$f_n{^{(\delta)}}(x)$ : $0{\leq}{\delta}{\leq}1$}, that the mean and variance of the lattice distributions are independent of ${\delta}$.

  • PDF

THE ZAGREB INDICES OF BIPARTITE GRAPHS WITH MORE EDGES

  • XU, KEXIANG;TANG, KECHAO;LIU, HONGSHUANG;WANG, JINLAN
    • Journal of applied mathematics & informatics
    • /
    • 제33권3_4호
    • /
    • pp.365-377
    • /
    • 2015
  • For a (molecular) graph, the first and second Zagreb indices (M1 and M2) are two well-known topological indices, first introduced in 1972 by Gutman and Trinajstić. The first Zagreb index M1 is equal to the sum of the squares of the degrees of the vertices, and the second Zagreb index M2 is equal to the sum of the products of the degrees of pairs of adjacent vertices. Let $K_{n_1,n_2}^{P}$ with n1 $\leq$ n2, n1 + n2 = n and p < n1 be the set of bipartite graphs obtained by deleting p edges from complete bipartite graph Kn1,n2. In this paper, we determine sharp upper and lower bounds on Zagreb indices of graphs from $K_{n_1,n_2}^{P}$ and characterize the corresponding extremal graphs at which the upper and lower bounds on Zagreb indices are attained. As a corollary, we determine the extremal graph from $K_{n_1,n_2}^{P}$ with respect to Zagreb coindices. Moreover a problem has been proposed on the first and second Zagreb indices.

On the Tensor Product of m-Partition Algebras

  • Kennedy, A. Joseph;Jaish, P.
    • Kyungpook Mathematical Journal
    • /
    • 제61권4호
    • /
    • pp.679-710
    • /
    • 2021
  • We study the tensor product algebra Pk(x1) ⊗ Pk(x2) ⊗ ⋯ ⊗ Pk(xm), where Pk(x) is the partition algebra defined by Jones and Martin. We discuss the centralizer of this algebra and corresponding Schur-Weyl dualities and also index the inequivalent irreducible representations of the algebra Pk(x1) ⊗ Pk(x2) ⊗ ⋯ ⊗ Pk(xm) and compute their dimensions in the semisimple case. In addition, we describe the Bratteli diagrams and branching rules. Along with that, we have also constructed the RS correspondence for the tensor product of m-partition algebras which gives the bijection between the set of tensor product of m-partition diagram of Pk(n1) ⊗ Pk(n2) ⊗ ⋯ ⊗ Pk(nm) and the pairs of m-vacillating tableaux of shape [λ] ∈ Γkm, Γkm = {[λ] = (λ1, λ2, …, λm)|λi ∈ Γk, i ∈ {1, 2, …, m}} where Γk = {λi ⊢ t|0 ≤ t ≤ k}. Also, we provide proof of the identity $(n_1n_2{\cdots}n_m)^k={\sum}_{[{\lambda}]{\in}{\Lambda}^k_{{n_1},{n_2},{\ldots},{n_m}}}$ f[λ]mk[λ] where mk[λ] is the multiplicity of the irreducible representation of $S{_{n_1}}{\times}S{_{n_2}}{\times}....{\times}S{_{n_m}}$ module indexed by ${[{\lambda}]{\in}{\Lambda}^k_{{n_1},{n_2},{\ldots},{n_m}}}$, where f[λ] is the degree of the corresponding representation indexed by ${[{\lambda}]{\in}{\Lambda}^k_{{n_1},{n_2},{\ldots},{n_m}}}$ and ${[{\lambda}]{\in}{\Lambda}^k_{{n_1},{n_2},{\ldots},{n_m}}}=\{[{\lambda}]=({\lambda}_1,{\lambda}_2,{\ldots},{\lambda}_m){\mid}{\lambda}_i{\in}{\Lambda}^k_{n_i},i{\in}\{1,2,{\ldots},m\}\}$ where ${\Lambda}^k_{n_i}=\{{\mu}=({\mu}_1,{\mu}_2,{\ldots},{\mu}_t){\vdash}n_i{\mid}n_i-{\mu}_1{\leq}k\}$.

CHARACTERIZATIONS OF THE PARETO DISTRIBUTION BY CONDITIONAL EXPECTATIONS OF RECORD VALUES

  • Lee, Min-Young
    • 대한수학회논문집
    • /
    • 제18권1호
    • /
    • pp.127-131
    • /
    • 2003
  • Let X$_1$, X$_2$,... be a sequence of independent and identically distributed random variables with continuous cumulative distribution function F(x). X$_j$ is an upper record value of this sequence if X$_j$ > max {X$_1$,X$_2$,...,X$_{j-1}$}. We define u(n)=min{j$\mid$j> u(n-1), X$_j$ > X$_{u(n-1)}$, n $\geq$ 2} with u(1)=1. Then F(x) = 1-x$^{\theta}$, x > 1, ${\theta}$ < -1 if and only if (${\theta}$+1)E[X$_{u(n+1)}$$\mid$X$_{u(m)}$=y] = ${\theta}E[X_{u(n)}$\mid$X_{u(m)}=y], (\theta+1)^2E[X_{u(n+2)}$\mid$X_{u(m)}=y] = \theta^2E[X_{u(n)}$\mid$X_{u(m)}=y], or (\theta+1)^3E[X_{u(n+3)}$\mid$X_{u(m)}=y] = \theta^3E[X_{u(n)}$\mid$X_{u(m)}=y], n $\geq$ M+1$.

On the edge independence number of a random (N,N)-tree

  • J. H. Cho;Woo, Moo-Ha
    • 대한수학회보
    • /
    • 제33권1호
    • /
    • pp.119-126
    • /
    • 1996
  • In this paper we study the asymptotic behavior of the edge independence number of a random (n,n)-tree. The tools we use include the matrix-tree theorem, the probabilistic method and Hall's theorem. We begin with some definitions. An (n,n)_tree T is a connected, acyclic, bipartite graph with n light and n dark vertices (see [Pa92]). A subset M of edges of a graph is called independent(or matching) if no two edges of M are adfacent. A subset S of vertices of a graph is called independent if no two vertices of S are adjacent. The edge independence number of a graph T is the number $\beta_1(T)$ of edges in any largest independent subset of edges of T. Let $\Gamma(n,n)$ denote the set of all (n,n)-tree with n light vertices labeled 1, $\ldots$, n and n dark vertices labeled 1, $\ldots$, n. We give $\Gamma(n,n)$ the uniform probability distribution. Our aim in this paper is to find bounds on $\beta_1$(T) for a random (n,n)-tree T is $\Gamma(n,n)$.

  • PDF

Asymptotics of a class of markov processes generated by $X_{n+1}=f(X_n)+\epsilon_{n+1}$

  • Lee, Oe-Sook
    • Journal of the Korean Statistical Society
    • /
    • 제23권1호
    • /
    • pp.1-12
    • /
    • 1994
  • We consider the markov process ${X_n}$ on R which is genereated by $X_{n+1} = f(X_n) + \epsilon_{n+1}$. Sufficient conditions for irreducibility and geometric ergodicity are obtained for such Markov processes. In additions, when ${X_n}$ is geometrically ergodic, the functional central limit theorem is proved for every bounded functions on R.

  • PDF

PRODUCTS OF MANIFOLDS AS CONDIMENSION k FINBRATORS

  • Im, Young-Ho
    • 대한수학회보
    • /
    • 제36권1호
    • /
    • pp.79-90
    • /
    • 1999
  • In this paper, we show that any product of a closed orientable n-manifold $N_1$ with finite fundamental group and a closed orientable asgerical m-mainfold $N_2$ with hopfian fundamental group, where X($N_1$) and X($N_2$) are nonzero, is a condimension 2 fibrator. Moreover, if <$\pi_i(N_1)$=0 for 1$N_1\timesN_2$ is a codimension k PL fibrator.

  • PDF

On the Numbers of Palindromes

  • Bang, Sejeong;Feng, Yan-Quan;Lee, Jaeun
    • Kyungpook Mathematical Journal
    • /
    • 제56권2호
    • /
    • pp.349-355
    • /
    • 2016
  • For any integer $n{\geq}2$, each palindrome of n induces a circulant graph of order n. It is known that for each integer $n{\geq}2$, there is a one-to-one correspondence between the set of (resp. aperiodic) palindromes of n and the set of (resp. connected) circulant graphs of order n (cf. [2]). This bijection gives a one-to-one correspondence of the palindromes ${\sigma}$ with $gcd({\sigma})=1$ to the connected circulant graphs. It was also shown that the number of palindromes ${\sigma}$ of n with $gcd({\sigma})=1$ is the same number of aperiodic palindromes of n. Let $a_n$ (resp. $b_n$) be the number of aperiodic palindromes ${\sigma}$ of n with $gcd({\sigma})=1$ (resp. $gcd({\sigma}){\neq}1$). Let $c_n$ (resp. $d_n$) be the number of periodic palindromes ${\sigma}$ of n with $gcd({\sigma})=1$ (resp. $gcd({\sigma}){\neq}1$). In this paper, we calculate the numbers $a_n$, $b_n$, $c_n$, $d_n$ in two ways. In Theorem 2.3, we $n_d$ recurrence relations for $a_n$, $b_n$, $c_n$, $d_n$ in terms of $a_d$ for $d{\mid}n$ and $d{\neq}n$. Afterwards, we nd formulae for $a_n$, $b_n$, $c_n$, $d_n$ explicitly in Theorem 2.5.