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PRODUCTS OF MANIFOLDS AS
CODIMENSION k FIBRATORS

Young Ho IMm

ABSTRACT. In this paper, we show that any product of a closed
orientable n-manifold N7 with finite fundamental group and a closed
orientable asherical m-manifold N2 with hopfian fundamental group,
where x(N1) and x(N2) are nonzero, is a codimension 2 fibrator.
Moreover, if m;(N1) = 0 for 1 < 7 < k, then N1 X N3 is a codimension
k PL fibrator.

1. Introduction

In studying proper maps between manifolds, approximate fibrations
introduced and studied by Coram and Duvall [2] form an important
class of mappings nearly as effective as Hurewicz fibrations.

A proper map p : M — B between locally compact ANRs is called
an approximate fibration if it has the following homotopy property:
Given an open cover € of B, an arbitrary space X and two maps g :
X - Mand F: X x I — B such that po g = Fp, there exists a map
G : X x I — M such that Gy = g and po G is e-close to F'.

When p: M — B is an approximate fibration, there is a homotopy
exact sequence developed by Coram and Duvall [2];

v = mig1(B) = mi(pT'b) — m(M) — wi(B) = -+

just like the one for Hurewicz fibrations, relating homotopy data of the
total space, base space, and typical fiber.
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An extensive variety of closed n-manifolds N, called codimension k&
(orientable, respectively) fibrators, automatically induce approximate
fibrations, in the sense that all proper maps f: M — B from any (ori-
entable, respectively) (n + k)-manifold M to a k-dimensional ANR B
such that each f~!(b) has the same homotopy type (or, more generally,
the same shape) as N are approximate fibrations.

The main problem is to determine which manifolds N are codimen-
sion k (orientable, respectively) fibrators.

Most closed manifolds are known to be codimension 1 orientable fi-
brators [4]. For codimension 2 (orientable) fibrators, we have fairly rich
data [1,5,6,7,11,15,16]. In particular, every closed surface except torus
and projective plane is a codimension 2 fibrator [5]. Also manifolds that
satisfy a certain hopfian property are codimension 2 orientable fibra-
tors if they have either non-zero Euler characteristic or hyperhopfian
fundamental groups [7]. Recently, Im and Kim [17] extended so that
they are also codimension 2 fibrators.

In section 3, we restrict objects to the PL category and all manifolds
are orientable. Restriction to the PL category offers some advantages.
The target spaces are standard geometric objects, obviously finite di-
mensional and locally contractible, features which a priori dispel po-
tentially troublesome issues lurking in the background of the general
(non-PL) setting [5]. The chief benefit is not the simplicial structure of
the image, however, but rather the potential for inductive arguments,
as in the classical PL topology, which apply to the restriction of p
over certain links in the target and bring about the lowering of fiber
codimension without changing fiber character. We call N a codimen-
sion k PL fibrator if, for all (n + k)-manifolds M and N-like PL maps
p : M — B(polyhedron), p is an approximate fibration. If N has this
property for all k > 0, call N simply a PL fibrator.

Surprisingly many manifolds are known to be codimension k& PL
fibrators [8,9]. If N is a closed, aspherical manifold which is a codimen-
sion 2 PL fibrator, then N is a codimension 3 PL fibrator. Moreover,
if N™ is a closed aspherical manifold with certain fundamental group,
then N™ is a PL fibrator.

So far, the matter of closure with respect to cartesian products of
codimension k fibrators is still open. On this front, Im {15,16] has shown
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that all cartesian products of surfaces of non-negative Euler character-
istic are codimension 2 fibrators. To determine whether any product of
finitely many codimension-2 fibrators is a codomension-2 fibrator, one
may confront the question, which is widely open, whether the collection
of hopfian manifolds is closed under the product operator.

In this paper, we show that any product of a closed orientable n-
manifold N; with finite fundamental group and a closed orientable ash-
erical m-manifold N, with hopfian fundamental group, where x(N1)
and x(N2) are nonzero, is a codimension 2 fibrator. Moreover, if
mi(N1) = 0 for 1 < i < k, then Ny x N, is a codimension k¥ PL fi-
brator.

A group G is hopfian if every epimorphism © : G — G is necessarily
an isomorphism, while a finitely presented group G is hyperhopfian
if every homomorphism ¥ : G — G with ¥(G) normal and G/ ¥(G)
cyclic is an automorphism. A group G is normally cohopfian if every
monomorphism ® : G — G with normal image is an automorphism,
and a group G is cohopfian if every monomorphism & : G — G is an
automorphism.

A closed manifold N is hopfian if it is orientable and every degree
one map h : N — N which induces a 7;-isomorphism is a homotopy
equivalence. This term plays an important role in determining approx-
imate fibrations. Swarup [20] has shown this hopfian feature for closed
orientable n-manifolds N with 7;(N) =0 for 1 <i < n — 1, and Haus-
mann has done the same for all closed orientable 4-manifolds and all
closed orientable manifolds with nilpotent fundamental group [13].

The (absolute) degree of amap f : N — N, where N is a closed, con-
nected, orientable n-manifold, is the non-negative integer such that the
induced endomorphism of H,(N : Z) 2 Z amounts to multiplication
by d, up to sign.

Homology is computed with integer coefficients unless the coefficient
module is mentioned.

A PL map p: M — B has Property R 2 if, for each b € B, a
retraction R : U — p~1b defined on some open set U O p~'b induces ;-
isomorphisms (R|) : m1(p~!0') — w1 (p~1b) for all ¥ € B sufficiently
close to b.
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2. Codimension 2 fibrators

In this section, we show that any cartesian product of a closed ori-
entable n-manifold N; with finite fundamental group and a closed
orientable asherical m-manifold Ny with hopfian fundamental group,
where x(N;) and x(IV2) are nonzero, is a codimension 2 fibrator.

LEMMA 2.1 ([7], THEOREM 5.10). All closed, hopfian manifolds
with hopfian fundamental group and nonzero Euler characteristic are
codimension 2 orientable fibrators.

REMARK. Im and Kim [17] extended so that all closed, hopfian man-
ifolds with hopfian fundamental group and nonzero Euler characteristic
are codimension 2 fibrators.

LEMMA 2.2. Let NJ* be a closed orientable manifold with finite
71(N1) and NJ* be a closed orientable aspherical manifold. If h : Ny X
Ny — Np x Ny is a degree one map, then so is hy = prohoi: Ny — Ny,
where pr : N1 x N — Ny is the projection and i : Ny — N1 X N3 is
the inclusion map.

Proof. Assume that h : Ny x No — Nj x N is a degree one map. By
taking a universal covering space (No, 8) of N3, (N1 % Ny,id x 6) is a
covering space of N1 X No. Let 2: Ny — Ny x N2 be a continuous map
for which (id x §) ot =7 and h: N x N2 — N; x N; be a continuous
map such that ko (id x 8) = (id x 6) o h by the lifting property. The
existence of h follows from the fact that m1(N3) is torsion-free and
(hoid x 0)u(m(Ny x N2)) C (id x )4 (m (Ny x N3)). Consider the
following commutative diagram

N]_—i>N1><N2———h——*N1XN2—E—>N1
idl idxel idx 6 ide
Nl—i>N1XN2——h-—>N1XN2-—IL—>N1

where g is the projection from N x Ng onto N;. Because N, is aspher-
ical, Ny is contractible and then H;(Nz) = 0 for all 4 > 1. According
to the Kiinneth Theorem, we have H,(N; x Np) = H,(N;) & Z and
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H,(N; x Ns) is isomorphic to the direct sum of D> o Hn-i(N1) ®
H;(N2) and @)y Hn—;—1(N1) * H;(N;). Thus, by the diagram chas-
ing, it is easily checked that h,(H,(N1)) C H,(N;) when we restrict h,
to H,(N1) and equate H,(N1) with H,(N;)® Ho(N2) C H,, (N7 x Ny).
Rewrite Hy (N1 x Nz) in a form {free} @ {torsion}. Note that H,,(IV; x
N3) is finitely generated. Since h, is an isomorphism, the restriction A,
to {free} of H,(N1 x N2) is an isomorphism and induces an invertible
(k x k)-matrix of the following form

All A12 e A]_k
. A21 A22 “ee Azk
Akl Ak2 e Akk

Here Ay is the matrix corresponding to map h,| : H,(N;) — H,(N;)
and A;; is the matrix induced by the homomorphism from the i-th
direct summand to the j-th direct summand of free part of H,(N; x
N3). Because of h,(H,(N1)) C Hn(Ny), the restriction h,|{free} of
h. doesn’t send the first factor H,,(N;) to any direct summand except
itself and thus A;; = 0 for j = 2,..., k. Since the isomorphism ha|{free}
induces detA = £1, we obtain detA;; = +1. This implies h; = prohot
is a degree one map. O

PROPOSITION 2.3. Let N7 be a closed orientable manifold with £-
nite m1(N1) and NJ* be a closed orientable aspherical manifold. Then
N; x Nj is a hopfian manifold.

Proof. Note that any closed orientable manifold with finite funda-
mental group is a hopfian manifold [13]. Let h : N3 x Ny — Nj x Ny
be a degree one map which induces a 71-isomorphism.

To show that h is a homotopy equivalence, we consider homomor-
phisms

h# I’/l’i(Nl X Ng) - 7l’i<N1 X Nz) for ¢ > 2.

Applying Lemma 2.2, the degree of h; = prohoi: N; — N is one.
Since N; has finite fundamental group, k; induces a m1-isomorphism.
By the fact that V; is a hopfian manifold, A; is a homotopy equivalence
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and so is h in the diagram of Lemma 2.2. Implying the fact that
(id x 0) g : (N1 X N;) — m;(N1 x N2) is an isomorphism for ¢ > 2,
hy @ mi(N1 x Na) — 7;(N1 X Nz) is an isomorphism for each i > 2.
Therefore, h is a homotopy equivalence by the Whitehead theorem. [

Now, we state the main result in this section.

THEOREM 2.4. Let NJ* be a closed orientable manifold with finite
71(N1) and NJ* be a closed orientable aspherical manifold with hopfian
71(Na), where where x(N1) and x(Nz) are nonzero Euler characteris-
tics. Then N; x N» is a codimension 2 fibrator.

Proof. From the fact [13] that any finitely generated group with finite
index hopfian subgroup is hopfian, the fundamental group of Ny X Ny is
hopfian. Then, Ny x N is a hopfian manifold with hopfian fundamental
group by Proposition 2.3. Since the Euler characteristic of N1 x Ny is
nonzero, we have the conclusion from [17]. d

COROLLARY 2.5. Let NI be a closed orientable manifold with finite
71(N1) and nonzero Euler characteristic, and N3" be a finite product
of closed orientable surfaces with non-zero Euler characteristic. Then
N; x Ny is a codimension 2 fibrator.

Proof. Rewrite Ny x Ny as N{ x N3, where Nj is a product of N;
and 2-spheres ,and N} is a product of closed orientable surfaces with
negative Euler characteristic. Since Nj is an aspherical manifold with
nonzero Euler characteristic, N1 x N3 is a codimension 2 fibrator from
Theorem 2.4. O

REMARK. Let NP be a closed, simply connected manifold with non-
zero Euler characteristic, and NJ* be a closed orientable aspherical
manifold with hopfian fundamental group and nonzero Euler charac-
teristic. Then N; x Ny is a codimension 2 fibrator.

3. Codimension k PL fibrators

Throughout this section, we restrict objects to the PL category and
all manifolds are orientable. For a PL map p: M — B, v will denote
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a vertex of a polyhedron B, L = link(v, B),S = star(v,B) = v * L,
L' = p7'L and &' = p~S. These are understood to arise in the
first barycentric subdivision of triangulations on which p is simplicial.
Note that every codimension 2 fibrator N must be a codimension 2 PL
fibrator.

LEMMA 3.1 ([8], Lemma 2.2). If X is a CW-complex such that
mi(X) = 0 for 1 < i < k and if the map f : X — X induces an
isomorphism 71 (X) — 71(X), then f also induces isomorphisms

fe: H(X) — Hi(X) and f*: H(X) - H'(X) (i < k)

LEMMA 3.2 ([9], Theorem 3.3"). Suppose N™ is a closed hopfian
manifold and p : M™** — B is an N-like PL map such that H™[p] is
locally constant. Then p is an approximate fibration if and only if p
has Property R 2.

To show the main result in this section, we begin with the following;

LEMMA 3.3. Let G be a finite group and K be a cohopfian and
torsion free group. Then G x K is cohopfian.

Proof. Let ¢ : G x K — G x K be a monomorphism. Consider the
following diagram

G G

| Joro

CxK —* ., OxK

iKT lprx
K K.,
where ig, ix are inclusions and prg, prg are pro jections.
From the fact that prg o ¢ 0 ig(G) is trivial, prg o ¢ o ik(K)=K
and so prg ogoig : K — K is an isomorphism because K is cohopfian.
Similarly, we have an isomorphism prg o ¢oic : G — G, because

prr o ¢ 0 ig(G) is trivial. As a result, it is easy to see that ¢ is an
isomorphism. 0

We state the main result in this section.
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THEOREM 3.4. Let N} be a closed manifold with finite 71 (N1) and
N5* be a closed aspherical manifold with hopfian fundamental group,
where x(N1) and x(N2) are nonzero. If 7;(N1) =0 for1 <i <k, then
N; x N, is a codimension k PL fibrator.

Proof. According to Theorm 2.4, N1 x N3 is a codimension 2 PL
fibrator. Let p : M™t™+*k — B¥ be any N-like PL map, where N =
N; x No. We consider cases separately k = 3 and k> 4.

(Case 1.) k=3

Because of x(N) # 0, B® is a 3-manifold [9, Lemma 2.3] and p
has Property R = [9, Lemma 5.1]. Since N is a codimension 2 PL
fibrator, p|L’ : L’ — L is an approximate fibration. From the complete
movability criterion [2], it suffices to show that R : ple—oplvisa
homotopy equivalence for any ¢ € L. Since N is a hopfian manifold
with Property R =, it is enough to show that R is a degree one map.

Applying the fact that my(N) = 0 and p has Property R =, by
Lemma 3.1 R induces isomorphisms

R, : Hi(N) — H;(N) and R* : HY(N) — H*(N) (i < 2).
First, the homology sequence of (S’, L’) shows
.- H3(S',L') — Ha(L') — Ha(S8") — Ha(S', L") -,
where the first term is Hz(S',L') & H™*™(N) = Z and the last term

is Hy(S',L') = H™*™1(N) = 0 by the Alexander duality.
Consider the following diagram

Hy(p™'c)

B

(*Y  Ha(S',L') —2— Hy(l!) —— Ho(S) —— 0

|7 |7

Hiy(S,I) —=—— Hy(L) —— H(S)=0
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Now, we show that p : Hy(L') — Hp(L)(2 Z) is an epimorphism.
Since p|L’ : L’ — L is an approximate fibration, we have the homotopy
exact sequence;

= m(N) = mo(L') — mo(L) — m(N) — -

By hypothesis, ma(N) is zero. Then py : m(L') — mo(L) is an
isomorphism from the diagram and Property R 2.
On the other hand, we have the natural following diagram

ma(L') ——— mo(L)

| =

Hy(L') —=— Hy(L)
where the vertical isomorphism is because L is a 2-sphere. This shows
that p), : Hy(L') — H(L) is an epimorphism.

Since S’ collapses to p~'v and R, : Ha(p™tc) — Hy(p~'v) = Hy(S")
is an isomorphism, H(L') = ImO(H3(N)) @ ImA(Hz(p 'c)) and we
easily check that in (*), p. : H3(S’,L') — H3(S, L) is an isomorphism
by the diagram chasing, and then we see that p, : H3(S", 8" —p~lv) —
Hj3(S,S — v) is an isomorphism. Similarly, we obtain an isomorphism
put H3(S', 8" —p~lc) — H3(S,8 —¢) for any c € S sufficiently close to
v.

Then the following commutative diagram holds, where U is a con-
nected open neighborhood of v inS having compact closure and ¢ € U.

H™™(p~lv) = Hy(S', 8" — p~lv) ———  H3(S,S —v) = HO(v)

I &

H3(8', 8" — cl(p~1U)) —= 5 H3(8,8 - cl(U)) = H(clU)
H™(p~le) = Hy(S', 8" —p~lc) —=——  Hs(S,S —c) = HO(c)

This implies that R* on the cohomology is constantly 1 near v, and
implies the same on the homology by the universal coefficient theorem.
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As a consequence, we conclude that R : p~lc — p~lv is a degree one
map and N is a codimension 3 PL fibrator.

(Case 2.) k>4

By induction, we can assume that N is a codimension (k—1)-fibrator.
Let p : M»t™tk _ Bk be any PL N-like map. Then p|L’ : L’ — L is
an approximate fibration and we have the homotopy exact sequence;

oo = M1 (N) = M1 (L) = me—1(L) — mr—2(N) — -~

Note that m1(IV2) is cohopfian {12] and has no abelian normal sub-
group [18]. Since ma(N) = 0 and m2(L') = m(N) = 0 by the gen-
eral position [9], mo(L) — m (V) in the homotopy exact sequence is
a monomorphism. By the fact that m;(NV7) is finite and 7;(NV2) is
cohopfian with no abelian normal subgroup, it is easy to check from
the homotopy exact sequence that m2(L) and (L) are finite. Since
m(N) =0for 1 <i<k—1and m(L) = m(S) fori < k—2[9,
Lemma 2.4}, we have m;(L) =0 for 2 < ¢ < k — 1. Consider the univer-
sal covering space L of L. Then m;(L) = 0, mo(L) finite, and m;(L) = 0
for 2 < i < k—1. Hence m3(L) = 0 by [8, Lemma 2.9], and so is ma(L).
By Lemma 3.3 m1(N) is cohopfian, and so p has Property R = and
711(L) = 0. This implies that L*~! is a homotopy (k — 1)-sphere.

Repeating the method of case 1, H"[p) is locally constant. By Lemma
3.2, we have the conclusion that p : M*t™+k — B* is an approximate
fibration. O

COROLLARY 3.5. Let N™ be a closed aspherical manifold with hop-

fian fundamental group and nonzero Euler characteristic. Then N is a
PL fibrator.

Proof. Since N is a hopfian manifold with hyperhopfian group, N is
a codimension 2 PL fibrator [7]. By copying the proof of Theorem 3.4,
it is shown that N is a codimension k PL fibrator for all £ > 0 so that
N is a PL fibrator: O

COROLLARY 3.6. Let N™ be a finite product of closed orientable
surfaces with negative Euler characteristic. Then N is a PL fibrator.
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Proof. Since N is closed aspherical manifold with hopfian fundamen-
tal group and nonzero Euler characteristic, the conclusion follows from
Corollary 3.6. il

(8]
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