• Title/Summary/Keyword: 0.18 ${\mu}m$ CMOS

Search Result 599, Processing Time 0.033 seconds

Highly Linear Differential Transconductance Amplifier With Mixed Source-degenerations (소스축퇴를 혼합하여 선형성을 개선시킨 차동 트랜스컨덕턴스 증폭기)

  • Lee, Sang-Geun;Kang, So-Young;Park, Chul-Soon
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.547-548
    • /
    • 2008
  • Linearity improvement technique of transconductor is presented in the paper. In order to certify the linearity improvement of proposed transconductor, the 3rd-order Elliptic low-pass Gm-C filter which provides 5MHz cutoff is implemented by using the transconductor. According to the IIP3 measurement result of filters, proposed filter has higher IIP3 than normal source-degeneration filter; the In-band IIP3 of proposed and normal filter are 10.1 dBm and 7.5 dBm respectively. The filter is fabricated in 1P6M $0.18-{\mu}m$ CMOS while consuming the 3.3mW with 1.8 Vdd. The in-band input-referred noise voltage is $62.3{\mu}Vrms$ and the SFDR is 54.1 dB.

  • PDF

Design of a Spread Spectrum Clock Generator for DisplayPort (DisplayPort적용을 위한 대역 확산 클록 발생기 설계)

  • Lee, Hyun-Chul;Kim, Tae-Ho;Lee, Seung-Won;Kang, Jin-Ku
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.7
    • /
    • pp.68-73
    • /
    • 2009
  • This paper describes design and implementation of a spread spectrum clock generator (SSCG) for the DisplayPort. The proposed architecture generates the spread spectrum clock using a sigma-delta fractional-N PLL. The SSCG uses a digital End order MASH 1-1 sigma-delta modulator and a 9bit Up/Dn counter. By using MASH 1-1 sigma-delta modulator, complexity of circuit and chip area can be reduced. The advantage of sigma-delta modulator is the better control over modulation frequency and spread ratio. The SSCG generates dual clock rates which are 270MHz and 162MHz with 0.25% down-spreading and triangular waveform frequency modulation of 33kHz. The peak power reduction is 11.1dBm at 270MHz. The circuit has been designed and fabricated using in 0.18$\mu$m CMOS technology. The chip occupies 0.620mm$\times$0.780mm. The measurement results show that the fabricated chip satisfies the DispalyPort standard.

High-speed CMOS Frequency Divider with Inductive Peaking Technique

  • Park, Jung-Woong;Ahn, Se-Hyuk;Jeong, Hye-Im;Kim, Nam-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.6
    • /
    • pp.309-314
    • /
    • 2014
  • This work proposes an integrated high frequency divider with an inductive peaking technique implemented in a current mode logic (CML) frequency divider. The proposed divider is composed with a master-slave flip-flop, and the master-slave flip-flop acts as a latch and read circuits which have the differential pair and cross-coupled n-MOSFETs. The cascode bias is applied in an inductive peaking circuit as a current source and the cascode bias is used for its high current driving capability and stable frequency response. The proposed divider is designed with $0.18-{\mu}m$ CMOS process, and the simulation used to evaluate the divider is performed with phase-locked loop (PLL) circuit as a feedback circuit. A divide-by-two operation is properly performed at a high frequency of 20 GHz. In the output frequency spectrum of the PLL, a peak frequency of 2 GHz is obtained witha divide-by-eight circuit at an input frequency of 250 MHz. The reference spur is obtained at -64 dBc and the power consumption is 13 mW.

An active-RC analog channel selection filter for IEEE 802.11a wireless LAN (IEEE 801.11a 무선랜을 위한 Active-RC 아날로그 채널 선택 필터)

  • Hwang, Jin-Hong;Yoo, Chang-Sik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.11 s.353
    • /
    • pp.77-82
    • /
    • 2006
  • Analog channel selection filter is described which is designed for a direct-conversion receiver of a IEEE 802.11a wireless LAN. The channel selection filter is an active-RC fifth-order Chebyshev filter with 10MHz cut-off frequency. Two-stage operational amplifier of the filter employs a current re-using feedforward frequency compensation scheme to minimize the power consumption. The filter has been implemented in a 0.18mm CMOS technology and the experimental results show 20mW power consumption with 1.8V supply voltage and 19dB out-of-band iIP3.

Group Delay Time Matched CMOS Microwave Frequency Doubler (군지연 시간 정합 CMOS 마이크로파 주파수 체배기)

  • Song, Kyung-Ju;Kim, Seung-Gyun;Choi, Heung-Jae;Jeong, Yong-Chae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.7
    • /
    • pp.771-777
    • /
    • 2008
  • In this paper, a frequency doubler using modified time-delay technique is proposed. A voltage controlled delay line (VCDL) in the proposed frequency doubler compensates the group delay time mismatching between input and delayed signal. With the group delay time matching and waveform shaping using the adjustable Schmitt triggers, the unwanted fundamental component($f_0$) and the higher order harmonics such as third and fourth are diminished excellently. In result, only the doubled frequency component($2f_0$) appears dominantly at the output port. The frequency doubler is designed at 1.15 GHz of $f_0$ and fabricated with TSMC $0.18\;{\mu}m$ CMOS process. The measured output power at $2f_0$ is 2.67 dBm when the input power is 0 dBm. The obtained suppression ratio of $f_0,\;3f_0$, and $4f_0$ to $2f_0$ are 43.65, 38.65 and 35.59 dB, respectively.

A 10-bit 10-MS/s SAR ADC with a Reference Driver (Reference Driver를 사용한 10비트 10MS/s 축차근사형 아날로그-디지털 변환기)

  • Son, Jisu;Lee, Han-Yeol;Kim, Yeong-Woong;Jang, Young-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.12
    • /
    • pp.2317-2325
    • /
    • 2016
  • This paper presents a 10 bit successive approximation register (SAR) analog-to-digital converter (ADC) with a reference driver. The proposed SAR ADC consists of a capacitive digital-to-analog converter (CDAC), a comparator, a SAR logic, and a reference driver which improves the immunity to the power supply noise. The reference driver generates the reference voltages of 0.45 V and 1.35 V for the SAR ADC with an input voltage range of ${\pm}0.9V$. The SAR ADC is implemented using a $0.18-{\mu}m$ CMOS technology with a 1.8-V supply. The proposed SAR ADC including the reference driver almost maintains an input voltage range to be ${\pm}0.9V$ although the variation of supply voltage is +/- 200 mV. It consumes 5.32 mW at a sampling rate of 10 MS/s. The measured ENOB, DNL, and INL of the ADC are 9.11 bit, +0.60/-0.74 LSB, and +0.69/-0.65 LSB, respectively.

Desing of the $96.5{\mu}W$ Limiting Amplifier using low power technique ($96.5{\mu}W$ 소비 전력을 갖는 리미팅 증폭기 설계)

  • Choi, Moon-Ho;Lee, Jong-Soo;Kang, Ji-Hee;Kim, Yeong-Seuk
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.521-522
    • /
    • 2008
  • This paper presents fully integrated low power consumption limiting amplifier. The proposed limiting amplifier is employed folded cascode structure with source degeneration output stage. This proposed structure demands few transconductance than conventional structure. It can be dramatically decrease current consumption. The total power consumption is only $96.5\;{\mu}W$ under a 1.8 V supply voltage in 9.5 dB limited gain condition. It was designed in using $0.18\;{\mu}m$ CMOS technology.

  • PDF

An Experimental 0.8 V 256-kbit SRAM Macro with Boosted Cell Array Scheme

  • Chung, Yeon-Bae;Shim, Sang-Won
    • ETRI Journal
    • /
    • v.29 no.4
    • /
    • pp.457-462
    • /
    • 2007
  • This work presents a low-voltage static random access memory (SRAM) technique based on a dual-boosted cell array. For each read/write cycle, the wordline and cell power node of selected SRAM cells are boosted into two different voltage levels. This technique enhances the read static noise margin to a sufficient level without an increase in cell size. It also improves the SRAM circuit speed due to an increase in the cell read-out current. A 0.18 ${\mu}m$ CMOS 256-kbit SRAM macro is fabricated with the proposed technique, which demonstrates 0.8 V operation with 50 MHz while consuming 65 ${\mu}W$/MHz. It also demonstrates an 87% bit error rate reduction while operating with a 43% higher clock frequency compared with that of conventional SRAM.

  • PDF

A Compact Low-Power Shunt Proximity Touch Sensor and Readout for Haptic Function

  • Lee, Yong-Min;Lee, Kye-Shin;Jeong, Taikyeong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.3
    • /
    • pp.380-386
    • /
    • 2016
  • This paper presents a compact and low-power on-chip touch sensor and readout circuit using shunt proximity touch sensor and its design scheme. In the proposed touch sensor readout circuit, the touch panel condition depending on the proximity of the finger is directly converted into the corresponding voltage level without additional signal conditioning procedures. Furthermore, the additional circuitry including the comparator and the flip-flop does not consume any static current, which leads to a low-power design scheme. A new prototype touch sensor readout integrated circuit was fabricated using complementally metal oxide silicon (CMOS) $0.18{\mu}m$ technology with core area of $0.032mm^2$ and total current of $125{\mu}A$. Our measurement result shows that an actual 10.4 inches capacitive type touch screen panel (TSP) can detect the finger size from 0 to 1.52 mm, sharply.

Trap characteristics of charge trap type NVSM with reoxidized nitrided oxide gate dielectrics (재산화 질화산화 게이트 유전막을 갖는 전하트랩형 비휘발성 기억소자의 트랩특성)

  • 홍순혁;서광열
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.6
    • /
    • pp.304-310
    • /
    • 2002
  • Novel charge trap type memory devices with reoxidized oxynitride gate dielectrics made by NO annealing and reoxidation process of initial oxide on substrate have been fabricated using 0.35 $\mu \textrm{m}$ retrograde twin well CMOS process. The feasibility for application as NVSM memory device and characteristics of traps have been investigated. For the fabrication of gate dielectric, initial oxide layer was grown by wet oxidation at $800^{\circ}C$ and it was reoxidized by wet oxidation at $800^{\circ}C$ after NO annealing to form the nitride layer for charge trap region for 30 minutes at $850^{\circ}C$. The programming conditions are possible in 11 V, 500 $\mu \textrm{s}$ for program and -13 V, 1ms for erase operation. The maximum memory window is 2.28 V. The retention is over 20 years in program state and about 28 hours in erase state, and the endurance is over $3 \times 10^3$P/E cycles. The lateral distributions of interface trap density and memory trap density have been determined by the single junction charge pumping technique. The maximum interface trap density and memory trap density are $4.5 \times 10^{10} \textrm{cm}^2$ and $3.7\times 10^{18}/\textrm{cm}^3$ respectively. After $10^3$ P/E cycles, interlace trap density increases to $2.3\times 10^{12} \textrm{cm}^2$ but memory charges decreases.