• Title/Summary/Keyword: 후보소재

Search Result 84, Processing Time 0.021 seconds

Biomaterials Inhibiting Biofilm Formation of Staphylococcus aureus (생물소재를 이용한 황색포도상구균의 바이오필름 억제 연구)

  • Shin, Kye-Ho;Yun, Yu-Na;Jeon, Gi-Boong;Lee, Tae-Ryong;Yi, Sung-Won;Cho, Jun-Cheol;Park, Ji-Yong
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.37 no.4
    • /
    • pp.347-350
    • /
    • 2011
  • Biofilms are surface-attached microbial communities with phenotypic and biochemical properties distinct from free-living planktonic cells. Biofilm bacteria show much greater resistance than planktonic counterparts and much higher concentration of biocide is needed to treat biofilms compared to the dosage used for planktonic bacteria. As a result, alternative strategies or more effective agents exhibiting activity against biofilm-producing micro-organisms are of great interest. Therefore, we turned our attention to control of biofilm of S. aureus. The aims of this research are to investigate substances which inhibit the formation of biofilm by S. aureus and to suggest effective materials for controlling skin problems. We coated slide glasses with human placental collagen and the coverslip was incubated with test materials and bacteria. The coverslip was stained with crystal violet and we measured optical density of each sample. The biofilm inhibitory activity was calculated by crystal violet staining degrees. In this study, S. aureus ATCC 6538 was used as test organism. Our results show that both water soluble and insoluble Hinoki cypress polysaccharide strongly inhibited biofilm formation. Whereas, green tea and sunset hibiscus root extract promoted biofilm. Xylitol showed a concentration dependent effect; high concentration (3 % and 5 %) of xylitol reduced biofilm while promoted biofilm formation at a concentration of 1 %. These results support that Hinoki cypress polysaccharide and xylitol have ability to suppress biofilm formation.

A Study on Improving Electrical Conductivity for Conducting Polymers and their Applications to Transparent Electrodes (전도성 고분자의 전기전도도 향상 연구 및 이를 이용한 투명전극 응용)

  • Im, Soeun;Kim, Soyeon;Kim, Seyul;Kim, Felix Sunjoo;Kim, Jung Hyun
    • Applied Chemistry for Engineering
    • /
    • v.26 no.6
    • /
    • pp.640-647
    • /
    • 2015
  • As the need for next-generation flexible electronics grows, novel materials and technologies that can replace conventional indium tin oxide (ITO) for transparent electrodes have been of great interest. Among them, a conducting polymer, especially poly(3,4-ethylenedioxythiophene) : poly(styrene sulfonate) (PEDOT : PSS) is one of the most promising candidates because it is mechanically flexible, inexpensive, and capable of being processed in solution. Currently, there are a lot of research efforts on enhancing its electrical conductivity to the level of ITO or metal electrodes through chemical and/or physical processing. In this review article, we present various additives and pre-/post-deposition processing methods for improving the electrical conductivity of PEDOT : PSS. Some of representative reports are also introduced, which demonstrated the use of conductivity-enhanced PEDOT : PSS as transparent electrodes in electronics and energy conversion.

Phenolic compounds from the flowers of Coreopsis lanceolata (큰금계국(Coreopsis lanceolata) 꽃으로부터 phenolic 화합물들의 분리 및 동정)

  • Kim, Hyoung-Geun;Oh, Hyun-Ji;Ko, Jung-Hwan;Jung, Young Sung;Oh, Seon Min;Lee, Yeong-Geun;Kim, Dae-Ok;Lee, Dae Young;Baek, Nam-In
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.4
    • /
    • pp.323-326
    • /
    • 2019
  • The flowers of Coreopsis lanceolata were extracted with 80% aqueous MeOH and the concentrates were partitioned into EtOAc, n-BuOH, and H2O fractions. The repeated silica gel (SiO2) and octadecyl silica gel column chromatographies for the EtOAc fraction led to isolation of one flavonol and one benzoyl compounds. The chemical structures of the compounds were respectively determined as melanoxetin (1) and protocatechuic acid methyl ester (2) based on spectroscopic analyses including NMR, IR, and MS. These two compounds were isolated for the first time from C. lanceolata flowers in this study. All fractions and the isolated compounds were evaluated for 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid radical scavenging activities.

Inhibitory Effect of DPPH Radical Scavenging Activity and Hydroxyl Radicals (OH) Activity of Hydrocotyle sibthorpioides Lamarck (피막이풀의 DPPH 라디칼과 hydroxyl radicals (OH) 항산화 활성 및 리폭시게나아제 저해 효과)

  • Cho, Kyung-Soon
    • Journal of Life Science
    • /
    • v.26 no.9
    • /
    • pp.1022-1026
    • /
    • 2016
  • In this study the hot water extract was prepared from Hydrocotyle sibthorpioides (Araliaceae) leaves and stems to study antioxidant activities and lipoxygenase inhibition. The extract showed the protective hydroxyl radical (-OH) which can damage virtually all types of macromolecules: carbohydrates, nucleic acids (mutations), lipids (lipid peroxidation), and amino acids. Hydroxyl radical scavenging activity of H. sibthorpioides was 78.6%. The extract showed strong activity against 1, 1- diphenyl 2-picrylhyorazyl (DPPH) which is a well-known radical and a trap (scavenger) for other radicals. DPPH scavenging activity of leaves of H. sibthorpioides was evaluated at 8.0 mg/ml was 86.0%. Lipoxygenases (LOXs) constitute a heterogeneous family of lipid peroxidizing enzymes capable of oxygenating polyunsaturated fatty acids to their corresponding hydroperoxy derivatives. The inhibitory effect of 15-LOX by H. sibthorpioides was assayed using a Morgan microplate assay. The extract of H. sibthorpioides was 55.5% inhibitory effects on the inhibition of LOX at 8.0 mg/ml. The IC50 values for OH activity, DPPH activity, and LOX inhibition from leaves 5.23 mg/ml, 6.44 mg/ml, and 3.71 mg/ml, respectively. Antioxidative activity assay showed that the water extracts from leaf and stem had a strong reducing power. These results show that H. sibthorpioides has some phytochemical constituents which may be active against the free radicals (OH and DPPH) and lipoxygenase enzyme.

Effects of Ulva lactuca Extracts on Cytotoxicity of Cancer Cell Lines and Immune Stimulation (갈파래(Ulva lactuca) 추출분획의 암 세포주에 대한 세포독성 및 면역활성 효과)

  • Jang, Min-Kyung;Kim, Nam-Young;Lee, Dong-Geun;Lee, Jae-Hwa;Ha, Jong-Myung;Ha, Bae-Jin;Kim, Mi-Hyang;Bae, Song-Ja;Jang, Jeong-Su;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.16 no.7 s.80
    • /
    • pp.1169-1173
    • /
    • 2006
  • Extracted fractions of the green seaweed Ulva lactuca were studied to verify the cytotoxicity and immunostimulating activity. The fractions from the ethanol extract of U. lactuca were prepared by the systematic extraction procedure with solvents such as hexane, ethyl ether, methanol, butanol and $H_2O$. The cytotoxic effects of U. lactuca fractions against human leukemia cell line U937, mouse neuroblastoma cell line (NB41A3), human hepatoma cell line (HepG2) and rat glioma cell line (C6) were investigated. Ethyl ether fraction showed the highest cytotoxicity against all four cell lines tested. In addition, $H_2O$ fraction also showed relatively high cytotoxicity. Dose dependent patterns were observed on all four cell lines. The immune-stimulating effects of U. lactuca fractions on rat macrophage cell line (RAW 264.7) were also investigated. All five fractions of U. lactuca extract stimulated NO production with concentration dependant manner. These results suggest that U. lactuca may be a useful candidate for a natural cancer preventing and immune-stimulating agents.

Synthesis, Morphology and Permeation Properties of poly(dimethyl siloxane)-poly(1-vinyl-2-pyrrolidinone) Comb Copolymer (폴리디메틸실록산-폴리비닐피롤리돈 빗살 공중합체 합성, 모폴로지 및 투과성질)

  • Patel, Rajkumar;Park, Jung Tae;Park, Min Su;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.27 no.6
    • /
    • pp.499-505
    • /
    • 2017
  • The increasing number of natural disasters resulting from anthropogenic greenhouse gas emissions has prompted the development of a gas separation membrane. Carbon dioxide ($CO_2$) is the main cause of global warming. Organic polymeric membranes with inherent flexibility are good candidates for use in gas separation membranes and poly(dimethyl siloxane)(PDMS) specifically is a promising material due to its inherently high $CO_2$ diffusivity. In addition, poly(vinyl pyrrolidine)(PVP) is a polymer with high $CO_2$ solubility that could be incorporated into a gas separation membrane. In this study, poly(dimethyl siloxane)-poly(vinyl pyrrolidine)(PDMS-PVP) comb copolymers with different compositions were synthesized under mild conditions via a simple one step free radical polymerization. The copolymerization of PDMS and PVP was characterized by FTIR. The morphology and thermal behavior of the produced polymers were characterized by transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). Composite membranes composed of PDMS-PVP on a microporous polysulfone substrate layer were prepared and their $CO_2$ separation properties were subsequently studied. The $CO_2$ permeance and $CO_2/N_2$ selectivity through the PDMS-PVP composite membrane reached 140.6 GPU and 12.0, respectively.

Establishment of Optimal Fermentation Conditions for Steam-dried Ginseng Berry via Friendly Bacteria and Its Antioxidant Activities (생체친화성 균주에 의한 인삼열매증포 추출물의 최적발효조건 및 항산화활성)

  • Kim, Seung Tae;Kim, Hee Jung;Jang, Su Kil;Lee, Do Ik;Joo, Seong Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.1
    • /
    • pp.77-83
    • /
    • 2013
  • In this study, we observed optimal conditions and suitable bacteria for the fermentation of steam-dried ginseng berry extracts (SGB) and determined antioxidant effects of the fermented extracts. Five bacteria (Lactobacillus fermentarum, L. plantarum, L. brevis, L. casei, Bacillus subtillis) were examined on their growth activities and viabilities in various culture temperatures ($25-35^{\circ}C$) and concentrations (25-100%). L. plantarum was considered to be the most suitable bacteria for the fermentation in both growth activity and viability. Moreover, the extracts fermented with L. plantarum showed more potent antioxidant efficacy in both 1,1-diphenyl-2-picrylhydrazyl radical and hydroxyl radical scavenging assay. High performance liquid chromatography analysis revealed that fermentation with L. plantarum changed the contents and components of ginsenosides. In conclusion, these data suggest that L. plantarum efficiently ferment SGB and the fermented extracts may have therapeutical values against oxidative stress and be a good candidate in adjuvant therapy where ginsenoside would be the main composition.

Screening for Antioxidative Activity of Jeju Native Plants (제주 자생 식물들의 항산화 활성 능력 검색)

  • Jang, Hyun-Ju;Bu, Hee Jung;Lee, Sunjoo
    • Korean Journal of Plant Resources
    • /
    • v.28 no.2
    • /
    • pp.158-167
    • /
    • 2015
  • We selected 8 plants among 11 Jeju native plants to search useful natural anti-oxidants by determining the amount of total polyphenols and the various anti-oxidative effects. Ethyl acetate extracts of Castanopsis sieboldii (Makino) Hatus. and butanol extracts of Oenothera laciniata Hill showed strong DPPH free radical scavenging effect. The IC50 value of each solvent extract was 1.6 ㎍/㎖ and 2.4 ㎍/㎖, respectively. The ethyl acetate fraction of Castanea crenata Siebold & Zucc exhibited strong inhibition against nitric oxide production. For the inhibition of xanthine oxidase, the ethyl acetate extracts of Castanea crenata Siebold & Zucc showed strong inhibition activity with 16 ㎍/㎖ of its IC50. The ethyl acetate extracts from Castanopsis sieboldii (Makino) Hatus showed strong superoxide scavenging effect with 7 ㎍/㎖ of its IC50. The hydroxyl radical scavenging activity of butanol extract of Castanopsis sieboldii (Makino) Hatus was 76%. Therefore, with more researches on purification and identification of active compounds, plants studied are expected to be natural sources for the functional food/cosmeceuticals with anti-oxidative properties.

Effect of Paeoniae Radix Alba on a thioacetamide induced liver fibrosis mice model (Thioacetamide로 유발된 간섬유증 동물 모델에서 백작약이 미치는 효능)

  • Lee, Se Hui;Lee, Jin A;Shin, Mi-Rae;Seo, Bu-Il;Roh, Seong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.5
    • /
    • pp.544-552
    • /
    • 2021
  • This study investigated the anti-fibrotic and antioxidant effects of Paeonia Radix Alba water extract (PR) on thioacetamide (TAA)-induced liver fibrosis in a mouse model and its underlying mechanisms. Liver fibrosis was induced by intraperitoneal injection of TAA (three times a week) for 8 weeks. Furthermore, silymarin (50 mg/kg body weight) and PR (200 mg/kg body weight) were administered for 8 weeks. PR treatment downregulated aspartate aminotransferase (AST), alanine aminotransferase (ALT), ammonia, and myeloperoxidase levels. Moreover, PR treatment downregulated NOX2 and p47phox and upregulated antioxidant enzymes by activating the Nrf2/Keap1 signaling pathway. Furthermore, PR inhibited the factors associated with fibrosis, such as α-SMA and collagen I. AMPK/SIRT1 was upregulated by PR treatment. Overall, these results suggest that PR attenuates liver fibrosis by regulating the Nrf2/Keap1 and AMPK/SIRT1/NF-κB signaling pathways through the inhibition of oxidative stress. Hence, PR has potential as a remedy for preventing and treating liver fibrosis.

Ag-Loaded LaSrCoFeO3 Perovskite Nano-Fibrous Web for Effective Soot Oxidation (Ag 담지된 LaSrCoFeO3 섬유상 perovskite 촉매의 탄소 입자상 물질의 산화반응)

  • Lee, Chanmin;Jeon, Yukwon;Hwang, Ho Jung;Ji, Yunseong;Kwon, Ohchan;Jeon, Ok Sung;Shul, Yong-Gun
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.584-588
    • /
    • 2019
  • The catalytic combustion of particulate matter (PM) is one of the key technologies to meet emission standards of diesel engine system. Therefore, we herein suggest Ag loaded $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$ perovskite web catalyst. They were produced by the electrospinning method. FE-SEM, EDS mapping, XRD, XPS were studied to investigate the crystal and morphological structures of loaded Ag particles and $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$ perovskite web catalyst. Following the catalytic soot oxidation, we found that the Ag loaded $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$ perovskiteweb catalyst showed the higher catalytic activities (e.g., $T_{50}=490^{\circ}C$) than the only $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$ perovskite web catalyst (e.g., $T_{50}=586^{\circ}C$). Thus, this finding suggests that Ag loaded $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$ perovskite web catalyst can be a promising candidate for enhancing the soot oxidation.