Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.6.499

Synthesis, Morphology and Permeation Properties of poly(dimethyl siloxane)-poly(1-vinyl-2-pyrrolidinone) Comb Copolymer  

Patel, Rajkumar (School of Electrical and Computer Engineering, The University of Seoul)
Park, Jung Tae (Department of Chemical Engineering, Konkuk University)
Park, Min Su (Department of Chemical and Biomolecular Engineering, Yonsei University)
Kim, Jong Hak (Department of Chemical and Biomolecular Engineering, Yonsei University)
Publication Information
Membrane Journal / v.27, no.6, 2017 , pp. 499-505 More about this Journal
Abstract
The increasing number of natural disasters resulting from anthropogenic greenhouse gas emissions has prompted the development of a gas separation membrane. Carbon dioxide ($CO_2$) is the main cause of global warming. Organic polymeric membranes with inherent flexibility are good candidates for use in gas separation membranes and poly(dimethyl siloxane)(PDMS) specifically is a promising material due to its inherently high $CO_2$ diffusivity. In addition, poly(vinyl pyrrolidine)(PVP) is a polymer with high $CO_2$ solubility that could be incorporated into a gas separation membrane. In this study, poly(dimethyl siloxane)-poly(vinyl pyrrolidine)(PDMS-PVP) comb copolymers with different compositions were synthesized under mild conditions via a simple one step free radical polymerization. The copolymerization of PDMS and PVP was characterized by FTIR. The morphology and thermal behavior of the produced polymers were characterized by transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). Composite membranes composed of PDMS-PVP on a microporous polysulfone substrate layer were prepared and their $CO_2$ separation properties were subsequently studied. The $CO_2$ permeance and $CO_2/N_2$ selectivity through the PDMS-PVP composite membrane reached 140.6 GPU and 12.0, respectively.
Keywords
comb copolymer; gas separation; composite membrane; permeance; selectivity;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 S. J. Kim, J. P. Jung, C. H. Park, and J. H. Kim, "Olefin separation membranes based on PEO/PDMS-g-POEM blends containing $AgBF_4/Al(NO_3)_3$ mixed salts", Membr. J., 25, 496 (2015).   DOI
2 J. H. Lee, J. P. Jung. E. Jang, K. B. Lee, Y. J. Hwang, B. K. Min, and J. H. Kim, "PEDOT-PSS embedded comb copolymer membranes with improved $CO_2$ capture", J. Membr. Sci., 518, 21 (2016).   DOI
3 H. Jeon, C. S. Lee, R. Patel, and J. H. Kim, "Well-organized meso-macroporous $SiO_2/SiO_2$ film derived from amphiphilic rubbery comb copolymer", ACS Appl. Mater. Interfaces, 7, 7767 (2015).   DOI
4 S. J. Kim, H. Jeon, D. J. Kim, and J. H. Kim, "High-performance polymer membranes with multifunctional amphiphilic micelles for $CO_2$ capture", Chem. Sus. Chem., 8, 3783 (2015).   DOI
5 D. P. Queiroz and M. N. De Pinho, "Structural characteristics and gas permeation properties of polydimethylsiloxane/poly(propylene oxide) urethane/urea bi-soft segment membranes", Polymer, 46, 2346 (2005).   DOI
6 F. Wu, L. Li, Z. Xu, S. Tan, and Z. Zhang, "Transport study of pure and mixed gases through PDMS membrane", Chem. Eng. J., 117, 51 (2006).   DOI
7 M. Sadrzadeh, K. Shajidi, and T. Mohammadi, "Synthesis and gas permeation properties of a single layer PDMS membrane", J. Appl. Polym. Sci., 117, 33 (2010).
8 G. Firpo, E. Angeli, L. Repetto, and U. Valbusa, "Permeability thickness dependence of polydimethylsiloxane (PDMS) membranes", J. Membr. Sci., 481, 1 (2015).   DOI
9 T. Hong, S. Chatterjee, S. M. Mahurin, F. Fan, Z. Tian, D. E. Jiang, B. K. Long, J. W. Mays, A. P. Sokolov, and T. Saito "Impact of tuning $CO_2$-philicity in polydimethylsiloxane-based membranes for carbon dioxide separation", J. Membr. Sci., 530, 213 (2017).   DOI
10 A. Ghadimi, M. Sadrzadeh, K. Shahidi, and T. Mohammadi, "Ternary gas permeation through a synthesized PDMS membrane: Experimental and modeling", J. Membr. Sci., 344, 225 (2009).   DOI
11 A. J. Ashworth, B. J. Brisdon, R. England, B. S. R. Reddy, and I. Zafar, "The permselectivity of polyorganosiloxanes containing ester functionalities", J. Membr. Sci., 56, 217 (1991).   DOI
12 Y. Bum, L. Ho, B. Park, J. Kie, S. Young, and M. Lee, "Synthesis and characterization of polyamideimide- branched siloxane and its gas-separation", J. Appl. Polym. Sci., 74, 965 (1993).
13 M. Smaihi, J. Schrotter, C. Lesimple, I. Prevost, and C. Guizard, "Gas separation properties of hybrid imide-siloxane copolymers with various silica contents", J. Membr. Sci., 161, 157 (1999).   DOI
14 J. A. Barrie, M. J. L.Williams, and H. G. Spencer, "Gas transport in heterogeneous polymer blends. III. Alternating block copolymers of poly(bisphenol-a carbonate) and polydimethylsiloxane", J. Membr. Sci., 21, 185 (1984).   DOI
15 K. Madhavan and B. S. R. Reddy, "Poly(dimethylsiloxane- urethane) membranes: Effect of hard segment in urethane on gas transport properties", J. Membr. Sci., 283, 357 (2006).   DOI
16 S. H. Yeon, S. H. Ahn, J. H. Kim, K. B. Lee, Y. Jeong, and S. U. Hong, "Synthesis and gas permeation properties of poly(vinyl chloride)-graftpoly(vinylpyrrolidone) membranes", Polym. Adv. Technol., 23, 516 (2012).   DOI
17 C. H. Park, J. H. Lee, M. S. Park, and J. H. Kim, "Facilitated transport: Basic concepts and applications to gas separation membranes", Membr. J., 27, 205 (2017).   DOI
18 R. Senthilkumar, R. Rajini, and B. S. R. Reddy, "Gas permeation and sorption properties of nonionic and cationic amino-hydroxy functionalized poly(dimethylsiloxane) membranes", J. Membr. Sci., 254, 169 (2005).   DOI
19 C. H. Lau, P. Li, F. Li, T. S. Chung, and D. R. Paul, "Reverse-selective polymeric membranes for gas separations", Progress Polym. Sci., 38, 740 (2013)   DOI
20 S. Basu, A. L. Khan, A. Cano-Odena, C. Liu, and I. F. J. Vankelecom, "Membrane-based technologies for biogas separations", Chem. Soc. Rev., 39, 750 (2010).   DOI
21 W. W. Chi, J. H. Lee, M. S. Park, and J. H. Kim, "Recent research trends of mixed matrix membranes for $CO_2$ separation", Membr. J., 25, 373 (2015).   DOI
22 H. Lin, Z. Ze, Z. Sun, J. Vu, A. Ng, M. Mohammaed, J, Kneip, T. C. Kerkel, T. Wu, and R. C. Mambrecht, "$CO_2$-selective membranes for hydrogen production and $CO_2$ capture - Part I: Membrane development", J. Membr. Sci., 457, 149 (2014).   DOI
23 T. C. Merkel, V. I. Bondar, K. Nagai, B. D. Freeman, and I. Pinnau, "Gas sorption, diffusion, and permeation in poly(dimethylsiloxane)", J. Polym. Sci. B: Polym. Phys., 38, 415 (2000).   DOI
24 P. Jha and J. D. Way, "Concentration and temperature dependence on diffusivities of $CO_2$ and N2 for poly(dimethyl, methylphenyl siloxane)", AIChE J., 54, 143 (2008).   DOI
25 Paul A. Gurr, Joel M. P. Scofield, Jinguk Kim, Qiang Fu, Sandra E. Kentish, and Greg G. Qiao, "Polyimide polydimethylsiloxane triblock copolymers for thin film composite gas separation membranes", J. Polym. Sci. A: Polym. Chem., 52, 3372 (2014).   DOI
26 L. Hu. J. Cheng, Y. Li, J. Liu, J. Zhou, and K. Cen, "Amino-functionalized surface modification of polyacrylonitrile hollow fiber-supported polydimethylsiloxane membranes", Appl. Surf. Sci., 413, 27 (2017).   DOI
27 M. Sadrzadeha, E. Salijoughia, K. Shahidia, and T. Mohammadia, "Preparation and characterization of a composite PDMS membrane on CA support", Polym. Adv. Technol., 21, 568 (2010).
28 L. Hu. J. Cheng, Y. Li, J. Liu, J. Zhou, and K. Cen "In-situ grafting to improve polarity of polyacrylonitrile hollow fiber-supported polydimethylsiloxane membranes for $CO_2$ separation", J. Colloid Interf. Sci., 510, 12 (2018).   DOI
29 J. P. Jung, C. H. Park, J. H. Lee, Y. S. Bae, and J. H. Kim, "Room-temperature, one-pot process for $CO_2$ capture membranes based on PEMA-g-PPG graft copolymer", Chem. Eng. J., 313, 1615 (2017).   DOI