DOI QR코드

DOI QR Code

Ag-Loaded LaSrCoFeO3 Perovskite Nano-Fibrous Web for Effective Soot Oxidation

Ag 담지된 LaSrCoFeO3 섬유상 perovskite 촉매의 탄소 입자상 물질의 산화반응

  • Lee, Chanmin (Research Institute of Sustainable Manufacturing System, Intelligent Sustainable Materials R&D Group, Korea Institute of Industrial Technology) ;
  • Jeon, Yukwon (School of Chemistry, University of St Andrews) ;
  • Hwang, Ho Jung (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Ji, Yunseong (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kwon, Ohchan (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Jeon, Ok Sung (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Shul, Yong-Gun (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • 이찬민 (한국생산기술연구원 청정생산시스템연구소 지능형청정소재 그룹) ;
  • 전유권 ;
  • 황호정 (연세대학교 화공생명공학과) ;
  • 지윤성 (연세대학교 화공생명공학과) ;
  • 권오찬 (연세대학교 화공생명공학과) ;
  • 전옥성 (연세대학교 화공생명공학과) ;
  • 설용건 (연세대학교 화공생명공학과)
  • Received : 2019.03.04
  • Accepted : 2019.04.10
  • Published : 2019.08.01

Abstract

The catalytic combustion of particulate matter (PM) is one of the key technologies to meet emission standards of diesel engine system. Therefore, we herein suggest Ag loaded $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$ perovskite web catalyst. They were produced by the electrospinning method. FE-SEM, EDS mapping, XRD, XPS were studied to investigate the crystal and morphological structures of loaded Ag particles and $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$ perovskite web catalyst. Following the catalytic soot oxidation, we found that the Ag loaded $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$ perovskiteweb catalyst showed the higher catalytic activities (e.g., $T_{50}=490^{\circ}C$) than the only $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$ perovskite web catalyst (e.g., $T_{50}=586^{\circ}C$). Thus, this finding suggests that Ag loaded $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$ perovskite web catalyst can be a promising candidate for enhancing the soot oxidation.

디젤엔진 시스템은 미세먼지 배출의 엄격해진 저감/제어 기준을 충족하기 위해서 산화촉매는 매우 중요한 기술 중에 하나이다. 본 연구에서는 효율적인 soot산화의 촉매로 Ag 나노입자가 loading된 $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$ 섬유상 web 촉매를 제시하였다. 제조된 촉매는 FE-SEM, EDS mapping, XRD, XPS 분석을 통해 특성을 평가하였다. Soot 산화성능측정결과 Ag의 효율적인 촉매특성과 증가된 soot입자와 표면의 접촉면적으로 인하여 50% 산화온도 평가($T_{50}=490^{\circ}C$)에서 자연적인 산화보다 $151^{\circ}C$ 가속화된 것을 확인하였다. 따라서 Ag가 loading된 촉매와 3차원적인 web 구조는 soot 산화에 효율적인 촉매후보군으로 확인하였다.

Keywords

HHGHHL_2019_v57n4_584_f0001.png 이미지

Fig. 1. SEM images of electro-spun nanofibers and fiber diameter distribution: (a-c) LaSrCoFe/PVP nanofibers web and (d-f) La0.6Sr0.4Co0.2Fe0.8O3 perovskite nanofibrous web calcined at 800 ℃.

HHGHHL_2019_v57n4_584_f0002.png 이미지

Fig. 2. SEM and EDS mapping images of 4.5 wt% Ag loaded La0.6Sr0.4Co0.2Fe0.8O3 perovskite nanofibrous web.

HHGHHL_2019_v57n4_584_f0003.png 이미지

Fig. 3. XRD patterns of 4.5 wt% Ag loaded La0.6Sr0.4Co0.2Fe0.8O3 and only La0.6Sr0.4Co0.2Fe0.8O3 perovskite nanofibrous webs.

HHGHHL_2019_v57n4_584_f0004.png 이미지

Fig. 4. XPS spectra of 4.5 wt% Ag loaded La0.6Sr0.4Co0.2Fe0.8O3 and only La0.6Sr0.4Co0.2Fe0.8O3 perovskite nanofibrous webs.

HHGHHL_2019_v57n4_584_f0005.png 이미지

Fig. 5. Thermo-gravimetric analysis (TGA) results for soot oxidation of mixture (catalyst and soot): 4.5 wt% Ag loaded La0.6Sr0.4Co0.2Fe0.8O3 nanofibrous web, La0.6Sr0.4Co0.2Fe0.8O3 nanofibrous web and only carbon black.

References

  1. Dockery, D. W., "Health Effects of Particulate Air Pollution," Ann Epidemiol, 19(4), 257-263(2009). https://doi.org/10.1016/j.annepidem.2009.01.018
  2. Koltsakis, G. C. and Stamatelos, A. M., "Catalytic Automotive Exhaust Aftertreatment," Prog. Energy Combust. Sci., 23(1), 1-39 (1997). https://doi.org/10.1016/S0360-1285(97)00003-8
  3. Gorsmann, C., "Catalytic Coatings for Active and Passive Diesel Particulate Filter Regeneration," Monatsh. Chem. Chem. Mon., 136(1), 91-105(2005). https://doi.org/10.1007/s00706-004-0261-z
  4. Dwyer, H., Ayala, H., Zhang, S., Collins, J., Huai, T., Herner, J. and Chau, W., "Emissions from a Diesel Car During Regeneration of an Active Diesel Particulate Filter," J. Aerosol Sci., 41(6), 541-552(2010). https://doi.org/10.1016/j.jaerosci.2010.04.001
  5. Krishna, K., Bueno-Lopez, A., Makkee, M. and Moulijn, J. A., "Potential Rare Earth Modified $CeO_2$ Catalysts for Soot Oxidation: I. Characterisation and Catalytic Activity with $O_2$," Appl. Catal. B: Environ., 75(3-4), 189-200(2007). https://doi.org/10.1016/j.apcatb.2007.04.010
  6. Castoldi, L., Matarrese, R., Lietti, L. and Forzatti, P., "Intrinsic Reactivity of Alkaline and Alkaline-earth Metal Oxide Catalysts for Oxidation of Soot," Appl. Catal. B: Environ., 90(1-2), 278-285 (2009). https://doi.org/10.1016/j.apcatb.2009.03.022
  7. Xue, L., Zhang, C., He, H. and Teraoka, Y., "Catalytic Decomposition of $N_2O$ over $CeO_2$ Promoted $Co_3O_4$ Spinel Catalyst," Appl. Catal. B: Environ., 75(3-4), 167-174(2007). https://doi.org/10.1016/j.apcatb.2007.04.013
  8. Shimokawa, H., Kusaba, H., Einaga, H. and Teraoka, Y., "Effect of Surface Area of La-K-Mn-O Perovskite Catalysts on Diesel Particulate Oxidation," Catal. Today, 139(1-2), 8-14(2008). https://doi.org/10.1016/j.cattod.2008.08.003
  9. Li, Z., Meng, M., Zha, Y., Dai, Y., Hu, T., Xie, Y. and Zhang, J., "Highly Efficient Multifunctional Dually-substituted Perovskite Catalysts $La_{1-x}K_xCo_{1-y}Cu_yO_{3-{\delta}}$ Used for Soot Combustion, NOx Storage and Simultaneous NOx-soot Removal," Appl. Catal. B: Environ., 121-122(13), 65-74(2012). https://doi.org/10.1016/j.apcatb.2012.03.022
  10. Pena, M. A. and Fierro, J. L. G., "Chemical Structures and Performance of Perovskite Oxides," Chem. Rev., 101(7), 1981-2018 (2001). https://doi.org/10.1021/cr980129f
  11. Stanmore, B. R., Brilhac, J. F. and Gilot, P., "The Oxidation of Soot: a Review of Experiments, Mechanisms and Models," Carbon, 39, 2247-2268(2001). https://doi.org/10.1016/S0008-6223(01)00109-9
  12. Villani, K., Kirschhock, C. E. A., Liang, D., Tendeloo, G. V. and Martens, J. A., "Catalytic Carbon Oxidation Over Ruthenium- Based Catalysts," Angew. Chemie Int. Ed., 45, 3106-3109(2006). https://doi.org/10.1002/anie.200503799
  13. Zhang, G., Zhao, Z., Liu, J., Jiang, G., Duan, A., Zheng, J., Chen, S. and Zhou, R., "Three Dimensionally Ordered Macroporous Ce1-xZrx$O_2$ Solid Solutions for Diesel Soot Combustion," Chem. Commun., 46(3), 457-459(2010). https://doi.org/10.1039/B915027G
  14. Aneggi, E., Wiater, D., Leitenburg, C. de., Llorca, J. and Trovarelli, A., "Shape-Dependent Activity of Ceria in Soot Combustion," ACS Catal., 4(1), 172-181(2014). https://doi.org/10.1021/cs400850r
  15. Miceli, P., Bensaid, S., Russo, N. and Fino, D., "$CeO_2$-based Catalysts with Engineered Morphologies for Soot Oxidation to Enhance Soot-catalyst Contact," Nanoscale Res. Lett., 9, 254 (2014). https://doi.org/10.1186/1556-276X-9-254
  16. Lee, C., Park, J.-I., Shul, Y.-G., Einaga, H. and Teraoka, Y., "Ag Supported on Electrospun Macro-structure $CeO_2$ Fibrous Mats for Diesel Soot Oxidation," Appl. Catal. B: Environ., 174-175, 185-192(2015). https://doi.org/10.1016/j.apcatb.2015.03.008
  17. Lee, C., Jeon, Y., Hata, S., Park, J.-I., Akiyoshi, R., Saito, H., Teraoka, Y., Shul, Y.-G. and Einaga, H., "Three-dimensional Arrangements of Perovskite-type Oxide Nano-fiber Webs for Effective Soot Oxidation," Appl. Catal. B: Environ., 191, 157-164 (2016). https://doi.org/10.1016/j.apcatb.2016.03.001
  18. Lee, C., Jeon, Y., Kim, T., Tou, A., Park, J.-I., Einaga, H. and Shul, Y.-G., "Ag-loaded Cerium-zirconium Solid Solution Oxide Nano-fibrous Webs and Their Catalytic Activity for Soot and CO Oxidation," Fuel, 212, 395-404(2018). https://doi.org/10.1016/j.fuel.2017.10.007
  19. Waller, D., Lane, J. A., Kilner, J. A. and Steele, B. C. H., "The Structure of and Reaction of A-site Deficient $La_{0.6}Sr_{0.4-x}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ Perovskites," Mater. Lett., 27(4-5), 225-228(1996). https://doi.org/10.1016/0167-577X(95)00289-8
  20. Fadley, C. S. and Shirley, D. A., "Electronic Densities op States From X-ray Photoelectron Spectroscopy," J. Res. Natl. Bur. Stand. Sect. A: Phys. Chem. A, 74A(4), 543-558(1970). https://doi.org/10.6028/jres.074A.045
  21. Gunawan, C., Teoh, W. Y., Marquis, C. P., Lifia, J. and Amal, R., "Reversible Antimicrobial Photoswitching in Nanosilver," Small, 5(3), 341-344(2009). https://doi.org/10.1002/smll.200801202
  22. Qu, Z., Cheng, M., Dong, X. and Bao, X., "CO Selective Oxidation in $H_2$-rich Gas over Ag Nanoparticles-effect of Oxygen Treatment Temperature on the Activity of Silver Particles Mechanically Mixed with $SiO_2$," Catal. Today, 93-95, 247-255(2004). https://doi.org/10.1016/j.cattod.2004.06.133
  23. Machida, M., Murata, Y., Kishikawa, K., Zhang, D. and Ikeue, K., "On the Reasons for High Activity of $CeO_2$ Catalyst for Soot Oxidation," Chem. Mater., 20(13), 4489-4494(2008). https://doi.org/10.1021/cm800832w