• Title/Summary/Keyword: 환원 효과

Search Result 1,193, Processing Time 0.03 seconds

Quality Characteristics of Seaweed Kimchi Containing Kjellmaniella crassifolia and Mytilus coruscus Seasoning (Kjellmaniella crassifolia와 Mytilus coruscus 조미액을 첨가한 해조김치의 품질특성)

  • Kim, Ki-Woong;Bae, Tae-Jin
    • Journal of Chitin and Chitosan
    • /
    • v.22 no.4
    • /
    • pp.254-263
    • /
    • 2017
  • In order to improve the utilization of seaweeds, two kinds of mixed seasoning concentrates (KMS, MKS) were prepared with Kjellmaniella crassifolia and Mytilus coruscus as main ingredients. Fermentation experiments were carried out at $4^{\circ}C$ for 70 days with Kimchi. As a result, SK-A showed a decrease in pH and an increase in acidity. Salinity was not significantly different after 70th day. Reducing sugar content was higher in mixed seasoning group. Lactic acid bacteria Leuconostoc sp. and Lactobacillus sp. Increased in the control group after 20 days of fermentation. The lightness was higher in the control group from the early stage of dipping to 30 days, and the degree of yellowing was higher than that of SK-B group from 20 days. The hardness of the SK-A group was high at the early stage of immersion and at 10th day. The content of aspartic acid and glutamic acid in free amino acid SK-A group was significantly higher (p<0.05). The content of sweet amino acids was significantly higher in the SK-A group on the 0th, 10th, and 30th days of fermentation than the other groups (p<0.05). The sensory test results showed that SK-A showed the most favorable taste. As a result of reviewing the above results, it is expected that SK-A group immersed in 100 g of seasoning liquid KMS made from Kjellmaniella crassifolia and Mytilus coruscus as a subordinate material will provide taste and nutrition to consumers.

Quality Characteristics of Makgeolli during Separation Storage Methods (분리저장 방법에 따른 막걸리의 품질특성)

  • Lee, Jin-Won;Park, Jang-Woo
    • Food Engineering Progress
    • /
    • v.14 no.4
    • /
    • pp.346-353
    • /
    • 2010
  • Due to the globalization of Korean foods, there are great interests in traditional Korean foods. Thus, the enhancement and development of makgeolli processing have been constantly accomplished. In case of makgeolli, the storage stability is very important because the fermentation of makgeolli during distribution is still progressed. Therefore, the objective of this study was to investigate storage stability of makgeolli by separation storage methods. During the 30-day storage at $10^{\circ}C$, pH value, titratable acidity, color value, sugar content, reducing sugar content, and alcohol content were measured. Microbial cell counts were also evaluated. Reducing sugar content was decreased after 10 days for all the samples. In the case of titratable acidity and color, these values were constantly increased with storage time. Especially, the yellowness value of the precipitate of makgeolli was increased by two times than that of the beginning. There was a decreasing tendency for lactic acid bacteria with storage time. In case of yeast, there was a decreasing tendency after 15 days, but the significance was not detected. The quality changes in the samples from centrifugal separation were relatively less than the control. Therefore, the separation storage method could affect the enhancement of makgeolli quality during distribution.

Effect of AlF3 on Zr Electrorefining Process in Chloride-Fluoride Mixed Salts for the Treatment of Cladding Hull Wastes (폐 피복관 처리를 위한 염소계-불소계 혼합용융염 내 지르코늄 전해정련공정에서 삼불화알루미늄의 효과 연구)

  • Lee, Chang Hwa;Kang, Deok Yoon;Lee, Sung-Jai;Lee, Jong-Hyeon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.2
    • /
    • pp.127-137
    • /
    • 2019
  • Zr electrorefining is demonstrated herein using Zirlo tubes in a chloride-fluoride mixed molten salt in the presence of $AlF_3$. Cyclic voltammetry reveals a monotonic shift in the onset of metal reduction kinetics towards positive potential and an increase in intensity of the additional peaks associated with Zr-Al alloy formation with increasing $AlF_3$ concentration. Unlike the galvanostatic deposition mode, a radial plate-type Zr growth is evident at the top surface of the salt during Zr electrorefining at a constant potential of -1.2 V. The diameter of the plate-type Zr deposit gradually increases with increasing $AlF_3$ concentration. Scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDX) and X-ray photoelectron spectroscopy (XPS) analyses for the plate-type Zr deposit show that trace amount of Al is incorporated as Zr-Al alloys with different chemical compositions between the top and bottom surface of the deposit. Addition of $AlF_3$ is effective in lowering the residual salt content in the deposit and in improving the current efficiency for Zr recovery.

Effect of Green Manure Incorporation and Solarization on Root Rot Disease of 3-year-old Ginseng in Soil of Continuous Cropping Ginseng (녹비작물 토양환원과 태양열 소독에 의한 3년생 인삼의 뿌리썩음병 억제효과)

  • Seo, Mun Won;Lee, Sung Woo;Lee, Seung Ho;Jang, In Bok;Heo, Hye Ji
    • Korean Journal of Medicinal Crop Science
    • /
    • v.27 no.4
    • /
    • pp.284-291
    • /
    • 2019
  • Background: Ginseng root rot disease, caused by Cylindrocarpon destructans and Fusarium solani is a major cause of replant failure in continuous cropping ginseng. Methods and Results: To control replant injury in soil infected with C. destructans and F. solani, biosolarization was performed by covering the plot with transparent polyethylene film after adding green manure of maize and sunflower for the summer season. Per 10 a, fresh and dry weight of maize was 10.1 and 2.5 tons, respectively, and that of sunflower was 8.1 tons and 1.2 tons, respectively. Mean maximum temperature at 20 cm depth was $33.2^{\circ}C$, $41.5^{\circ}C$ and $41.8^{\circ}C$ in the control, maize-incorporated and sunflower-incorporated plots, respectively. The elapsed time over $40^{\circ}C$ was 36.4 h in the maize-incorporated plot and 77.3 h in the sunflower-incorporated plot. Biosolarization increased $NO_3$ content in soil, while content of organic matter, Ca, and Mg was decreased. Electrical conductivity, $NO_3$ and $P_2O_5$ in soil significantly increased after two years of biosolarization. The number of spores of C. destructans in soil was significantly decreased by biosolarization, and sunflower treatment was more effective than maize treatment in decreasing the number of spores. Root yield of 3-year-old ginseng was significantly increased by biosolarization, however, there was no significant difference between maize and sunflower treatments. Rate of root rot in 3-year-old ginseng decreased to 16.5% with the incorporation maize and 5.0% with the incorporation of sunflower, while that in control 25.6%. Conclusions: Biosolarization was effective in inhibiting ginseng root rot by decreasing the density of root rot disease and improving soil chemical properties.

Increased Antioxidative Activity of Fermented Ligusticum striatum Makino Ethanol Extract by Bioconversion using Lactobacillus plantarum BHN-LAB 129 (Lactobacillus plantarum BHN-LAB 129의 생물전환공정을 통한 천궁 발효 추출물의 항산화 활성 증대)

  • Kim, Byung-Hyuk;Jeong, Su Jin;Jang, Jong-Ok;Lee, Jun-Hyeong;Park, YeEun;Kim, Jung-Gyu;Kwon, Gi-Seok;Hwang, Hak-Soo;Lee, Jung-Bok
    • Journal of Life Science
    • /
    • v.29 no.8
    • /
    • pp.846-853
    • /
    • 2019
  • Phytochemical compounds of Ligusticum striatum Makino are used as traditional medicinal herbs in Asia. These compounds are reported to have pain relief and antioxidant activities in gynecological and brain diseases. In this study, we investigated the antioxidant effects of Ligusticum fermented ethanol extract from Lactobacillus plantarum BHN-LAB 129 isolated from Kimchi, a Korean traditional food. The total polyphenol and total flavonoid contents increased by about 116.2% and 281.0% respectively, in the fermented Ligusticum extract as compared with those in the nonfermented Ligusticum ethanol extract. Superoxide dismutase-like (SOD), DPPH radical scavenging, ABTS radical scavenging, and reducing power activities increased by around 139.9%, 199.6%, 301.0%, and 137.1%, respectively, in the fermented Ligusticum ethanol extract as compared with these parameters in the nonfermented Ligusticum ethanol extract, respectively. In conclusion, the fermented Ligusticum ethanol extract with L. plantarum BHN-LAB 129 was effective in increasing the antioxidant effects. The bioconversion process in this study points to the potential of using Ligusticum to produce phytochemical-enriched natural antioxidant agents with high added value. The findings may prove useful in the development of improved foods and cosmetic materials.

The Effects of Different Membranes on the Performance of Aqueous Organic Redox Flow Battery Using Anthraquinone and TEMPO Redox Couple (안트라퀴논과 템포 활물질 기반 수계 유기 레독스 흐름 전지에서의 멤브레인 효과)

  • Lee, Wonmi;Kwon, Yongchai
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.695-700
    • /
    • 2019
  • n this study, the evaluation of performance of AORFB using anthraquinone derivative and TEMPO derivative as active materials in neutral supporting electrolyte with various membrane types was performed. Both anthraquinone derivative and TEMPO derivative showed high electron transfer rate (the difference between anodic and cathodic peak potential was 0.068 V) and the cell voltage is 1.17 V. The single cell test of the AORFB using 0.1 M active materials in 1 M KCl solution with using Nafion 212 membrane, which is commercial cation exchange membrane was performed, and the charge efficiency (CE) was 97% and voltage efficiency (VE) was 59%. In addition, the discharge capacity was $0.93Ah{\cdot}L^{-1}$ which is 35% of theoretical capacity ($2.68Ah{\cdot}L^{-1}$) at $4^{th}$ cycle and the capacity loss rate was $0.018Ah{\cdot}L^{-1}/cycle$ during 10 cycles. The single cell tests were performed with using Nafion 117 membrane and SELEMION CSO membrane. However, the results were more not good because of increased resistance because of thicker thickness of membrane and increased cross-over of active materials, respectively.

Evaluation of biological activity for Dangyuja (Citrus grandis) leaves and investigation of optimal concentrations extracted by alternative ethanol concentrations (에탄올 농도별 당유자 잎의 최적추출조건 및 생리활성 평가)

  • Nakamura, Masaya;Ra, Jong-Hwan;Kim, Ju-Sung
    • Journal of Plant Biotechnology
    • /
    • v.46 no.1
    • /
    • pp.45-55
    • /
    • 2019
  • TheCitrus grandis Osbeck is a special product in the Jeju island. The product has been as a remedy for liver damage and hang over. This study demonstrates how to investigate and compare the antioxidant, phenol content, tyrosinase and ${\alpha}$-glucosidase inhibitory activity, antimicrobial, and alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) activity with the C. grandis leaves extracted in different ethanol concentrations. From the yield, a 20% ethanol extract demonstrated the highest results among the other extracts. The distilled water extract showed the most abundant in a total phenol content and highest ABTS radical scavenging activity and reducing power assay. In the DPPH radical scavenging activity, ${\alpha}$-glucosidase and tyrosinase inhibitory assay (used ${\text\tiny{L}}$-tyrosine as substrate), the 80% ethanol extract exhibited a higher value than other extracts. The 60% ethanol extract showed prominent activities in the tyrosinase inhibitory (used ${\text\tiny{L}}$-dopa as substrate), ADH and ALDH activity assay. In the minimum inhibitory concentration (MIC) assay, 60% and 80% ethanol extracts inhibited the bacterial growth almost similarly. Moreover, the gram-positive bacteria was more restrained than the gram-negative bacteria. The resultsrevealed that the distilled water and 80% ethanol extract showed a relatively higher antioxidant activity compared to other extracts. The 60 ~ 80% ethanol extracts demonstrated potential tyrosinase, ${\alpha}$-glucosidase inhibitory, antimicrobial, ADH and ALDH activities. Therefore, the C. grandis is suggested to be considered as a functional material for various proposes.

Anti-inflammatory and Antioxidant Effects of Hot Water Extracts from Kaempferia Galanga L (삼내자 열수추출물의 항산화 및 항염 효과)

  • Chan, Ching Yuen Venus;Lee, Ji-An
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.6
    • /
    • pp.218-226
    • /
    • 2019
  • In this study, we investigated the possibility of Kaempferia Galanga(KG) hot water extract on the antioxidant, cytotoxic and anti-inflammatory efficacy as a cosmetic ingredient. Antioxidant effects were evaluated based on DPPH and ABTS radical scavenging activity, FRAP assay, and total polyphenol contents. The MTT assay was used to confirm the cell toxicity in mouse macrophage RAW264.7 cells. Anti-inflammatory effects were also investigated in LPS-induced RAW264.7 cells by measuring secretion of NO, $TNF-{\alpha}$ and iNOS, $TNF-{\alpha}$ mRNA expression level. As a result, DPPH and ABTS radical scavenging activities were increased in a concentration-dependent manner. The ferric reducing antioxidant power(FRAP) was the highest at 5 mg/mL as 24.5 uM. The measurements of total polyphenol content was $1.28{\pm}0.064mg\;GAE/g$. The cytotoxicity of the KG extract results showed no cytotoxicity at concentration of 0.625 to 2.5 mg/mL. In addition, the extract of KG significantly suppressed the LPS-induced nitrite, $TNF-{\alpha}$ secretion and the mRNA expression of iNOS, $TNF-{\alpha}$ in RAW264.7 cells. Taken together, these data suggest that the KG hot water extracts can be used as a safe and functional cosmetic raw material.

Synthesis of Colloidal Gold and Application of Skin Care Cosmetics (콜로이달 골드 합성 및 스킨케어 화장품 응용)

  • Kim, Dae-Seop;Jeong, Seung-Hyun;Kim, In-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.5
    • /
    • pp.1325-1334
    • /
    • 2021
  • This study reports the development of a manufacturing method of synthesizing colloidal gold using catalysts available for cosmetics and an anti-aging ampoule with skin improvement effects using it. Nano-colloidal gold was synthesized by using ascorbic acid and sodium borohydride as a reducing catalyst in hydrogen tetrachloroaurate tetrahydrate. It was confirmed that the particles became smaller as the mass of the content of ascorbic acid, which is a catalyst, increased. On the other hand, as the mass of sodium borohydride increased, the particle size tended to increase. In order to control the colloidal gold reaction rate, particles having 100 to 500 nm of a particle diameter distribution could be obtained using xanthan gum and hydroxyethylcellulose. The optimal synthesis conditions could be obtained by reacting for 1 to 4 hours at 18℃, a reduced pressure state of 20 to 75 mmHg, a stirring speed of 10~50 rpm. The synthesized colloidal gold had a unique smell of dark pink, pH = 5.5, specific gravity of 1.0032, and viscosity of 80 to 310 cps. As an application of skin care cosmetics, anti-aging ampoule has been developed, and it is expected to be used for various prescriptions and formulations using it.

Antioxidant and Antiproliferating Effects of Prunus mume Vinegar Powder on Breast Cancer Cells (매실 식초 분말의 항산화 및 유방암 세포주 증식 억제 효과)

  • Park, Wool-Lim;Kim, Jeong-Ho;Heo, Ji-An;Won, Yeong-Seon;Seo, Kwon-Il
    • Journal of Life Science
    • /
    • v.31 no.2
    • /
    • pp.149-157
    • /
    • 2021
  • Prunus mume Sieb. et Zucc is widely distributed in East Asia (Korea, Japan, and China), and its fruit is often used as a medication and food material. However, because most previous studies have only investigated the state of Prunus mume fruit extract, studies on the various ways of processing this extract are still needed to increase its utilization. In this study, we evaluated the physicochemical properties and physiological activities of spray-dried Prunus mume vinegar powder (SPP). The sugar content, pH, total acidity, and moisture content of the SPP were 8.90 °Brix, 3.19, 1.05%, and 3.07%, respectively. The SPP exhibited significantly high antioxidant activity in terms of DPPH radical scavenging activity (65.55%), reducing power (1.48), and hydrogen peroxide scavenging activity (48.07%). In addition, the SPP remarkably decreased the cell viability of human breast MDA-MB-231 and human skin cancer SK-MEL-28 in a dose-dependent manner. The morphological results of the treatment of MDA-MB-231 cells with SPP were distorted, shrunken cell masses. Furthermore, apoptotic bodies and nuclear condensation formed in the SPP-treated MDA-MB-231 cells. The total polyphenol and flavonoid contents of the SPP were 59.58 ㎍/g (gallic acid equivalent) and 57.56 ㎍/g (quercetin equivalent). The results of this study indicate that SPP, which has antioxidant activity and anticancer effects, can be useful in the development of natural medicines and functional food ingredients.