DOI QR코드

DOI QR Code

Synthesis of Colloidal Gold and Application of Skin Care Cosmetics

콜로이달 골드 합성 및 스킨케어 화장품 응용

  • Received : 2021.10.25
  • Accepted : 2021.10.30
  • Published : 2021.10.30

Abstract

This study reports the development of a manufacturing method of synthesizing colloidal gold using catalysts available for cosmetics and an anti-aging ampoule with skin improvement effects using it. Nano-colloidal gold was synthesized by using ascorbic acid and sodium borohydride as a reducing catalyst in hydrogen tetrachloroaurate tetrahydrate. It was confirmed that the particles became smaller as the mass of the content of ascorbic acid, which is a catalyst, increased. On the other hand, as the mass of sodium borohydride increased, the particle size tended to increase. In order to control the colloidal gold reaction rate, particles having 100 to 500 nm of a particle diameter distribution could be obtained using xanthan gum and hydroxyethylcellulose. The optimal synthesis conditions could be obtained by reacting for 1 to 4 hours at 18℃, a reduced pressure state of 20 to 75 mmHg, a stirring speed of 10~50 rpm. The synthesized colloidal gold had a unique smell of dark pink, pH = 5.5, specific gravity of 1.0032, and viscosity of 80 to 310 cps. As an application of skin care cosmetics, anti-aging ampoule has been developed, and it is expected to be used for various prescriptions and formulations using it.

이 연구는 화장품에 사용가능한 촉매제를 사용하여 콜로이달 골드를 합성하는 제조법과 이를 이용한 피부 개선 효과를 가진 항노화 엠플에 응용하였다. 하이드로젠테트라클로로아우레이트테트라하이드레이트에 아스코르빅애씨드, 소듐보로하이드라이드를 환원촉매제로 사용하여 나노 콜로이드를 합성하였다. 촉매제인 아스코르빅애씨드의 함량의 질량이 증가될수록 입자가 작아지는 것을 확인하였다. 반면 소듐보로하이드라이드의 질량이 증가될수록 입자크기는 증가하는 경향을 보였다. 콜로이달 골드 반응 속도를 조절하기 위하여, 잔탄검과 하이드록시에칠셀룰로오스를 사용하여 100~500 nm의 입경분포를 가진 입자를 얻을 수 있었다. 최적의 합성조건은 18℃, 20~75 mmHg의 감압상태, 교반속도 10~50rpm, 1~4시간동안 반응하여 획득할 수 있었다. 합성된 콜로이달 골드의 외관은 진한 핑크색, pH=5.5, 비중은 1.0032, 점도는 80~310 cps로 특이한 고유 냄새를 가지고 있었다. 스킨케어 화장료의 응용으로, 안티에이징 엠플을 개발하였고, 이를 이용한 다양한 처방과 제형개발에 활용될 것으로 기대한다.

Keywords

References

  1. K. S. Moon, S. H. Oh, C. G. Jeong, J. M. Bae, S. H. Oh, "Titania nanotube template based synthesis of gold nanotubes and their antibacterial activity", Korean Journal of Dental Materials, Vol.45, No.1, pp.35-44, (2018). https://doi.org/10.14815/kjdm.2018.45.1.35
  2. M. Lqbal, G. Usanase, K. Oulmi, F. Aberkane, T. Bendaikha, H. Fessi, "Preparation of gold nanoparticles and determination of their particles size via different methods", Journal of Elsevier Science. Vol.79, pp.97-104, (2015).
  3. J. Lee, "Functional gold nanoparticles", Journal of the KIMST. Vol. 12, No.6, pp.739-749, (2009).
  4. S. Sally, M. Bahadory, A. V. Jeyarajasingam, S. A. Rutkowsky, and C. Boritz, "Synthesis and study of silver nanoparticles", Journal of Chemical Education. Vol.84, pp.322-25, (2007). https://doi.org/10.1021/ed084p322
  5. C. Oliver, "Preparation of colloidal gold", Immunocytochemical Methods and Protocols. Vol.115, pp.327-330, (1999). https://doi.org/10.1385/1-59259-213-9:327
  6. J. K. Jang, H. J. Kim, S. L. Chandra, "Theoretical study on the effects of particle size distribution on the optical properties of colloidal gold", Journal of the Korean Chemical Society. Vol.51, No.5, pp.407-411, (2007). https://doi.org/10.5012/JKCS.2007.51.5.407
  7. Y. Xia, X. Xia, Y. Wang and S. Xie, "Shape-controlled synthesis of metal nanocrystals", MRS Bulletin, Vol.38, No.4, pp.335-344, (2013). https://doi.org/10.1557/mrs.2013.84
  8. Y. Xia, Xi. Xia, and H. Peng, "Thermodynamic versus kinetic products", J. Am. Chem. Soc. Vol.137, No.25, pp.7947-7966, (2015). https://doi.org/10.1021/jacs.5b04641
  9. M. S. Han, Y. G. Lee, Y. H. Lee, D. W. Kim, and S. G. Oh, "Photodegradation of safranin-O dye by Au metal colloid in cosmetics", Journal of the Society of Cosmetic Scientists of Korea. Vol.34, No.2, pp.75-82, (2008).
  10. H. Zhang, Z. Cao, J. He, Z. Liu, S. Peng, X. Liu, B. Chen, "Shape evolution and control of wurtzite CdSe nanocrystals through a facile one-pot strategy", The Journal of Physical Chemistry C 2021, Vol.125, No.34, pp.18905-18915, (2021).
  11. Q. N. Nguyen, R. Chen, Z. Lyu, Y. Xia, "Using reduction kinetics to control and predict the outcome of a colloidal synthesis of noble-metal nanocrystals", Inorganic Chemistry. Vol.60, No.7, pp.4182-4197, (2021). https://doi.org/10.1021/acs.inorgchem.0c03576
  12. X. Chen, J. Wang, R. Pan, S. Roth, S. Forster, "Insights into growth kinetics of colloidal gold nanoparticles: In situ SAXS and UV-Vis evaluation", The Journal of Physical Chemistry C 2021. Vol.125, No.1, pp.1087-1095, (2020).
  13. M. A. Imae, T. Yogo, T. Aoi, K. Okazaki, "Synthesis of gold nanoparticles in a winsor II type microemulsion and their characterization", Journal of Colloid and Interface Science, Vol. 256, pp.297-303, (2002). https://doi.org/10.1006/jcis.2002.8691
  14. M. H. Lin, J. A. Wang, G. H. Kim, J. Liu, L. Pan, "One-pot heterointerfacial metamorphosis for synthesis and control of widely varying heterostructured nanoparticles", Journal of the American Chemical Society 2021, Vol.143, No.9, pp.3383-3392, (2021).
  15. Y. X. Wang, A. J. Li, H. L. Wang, W. Liu, J. Kang, J. Lu, S. Y. Lu, Y. Yang, "In situ seed-mediated growth of polymergrafted gold nanoparticles", Langmuir 2020, Vol.36, No.3, pp.789-795, (2019).