DOI QR코드

DOI QR Code

Effect of AlF3 on Zr Electrorefining Process in Chloride-Fluoride Mixed Salts for the Treatment of Cladding Hull Wastes

폐 피복관 처리를 위한 염소계-불소계 혼합용융염 내 지르코늄 전해정련공정에서 삼불화알루미늄의 효과 연구

  • Received : 2019.06.19
  • Accepted : 2019.06.24
  • Published : 2019.06.30

Abstract

Zr electrorefining is demonstrated herein using Zirlo tubes in a chloride-fluoride mixed molten salt in the presence of $AlF_3$. Cyclic voltammetry reveals a monotonic shift in the onset of metal reduction kinetics towards positive potential and an increase in intensity of the additional peaks associated with Zr-Al alloy formation with increasing $AlF_3$ concentration. Unlike the galvanostatic deposition mode, a radial plate-type Zr growth is evident at the top surface of the salt during Zr electrorefining at a constant potential of -1.2 V. The diameter of the plate-type Zr deposit gradually increases with increasing $AlF_3$ concentration. Scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDX) and X-ray photoelectron spectroscopy (XPS) analyses for the plate-type Zr deposit show that trace amount of Al is incorporated as Zr-Al alloys with different chemical compositions between the top and bottom surface of the deposit. Addition of $AlF_3$ is effective in lowering the residual salt content in the deposit and in improving the current efficiency for Zr recovery.

삼불화알루미늄($AlF_3$)이 포함된 염화물-불화물 혼합 용융염에서 ZIRLO 튜브를 이용한 지르코늄 전해정련공정을 실증하였다. 순환 전압전류실험 결과, $AlF_3$의 농도가 증가함에 따라 금속환원의 개시 전위가 일정하게 증가하고 지르코늄-알루미늄 합금형성과 관련된 추가적인 peak의 크기가 점차 증가하는 것으로 나타났다. 전류조절 전착법과 달리, -1.2 V의 일정전위에서 수행한 지르코늄 전해정련에서 방사형 판 구조의 지르코늄 성장이 염의 상단 표면에서 확연하게 나타났으며, 전착물 지름의 크기는 $AlF_3$의 농도에 따라 점차 증가하는 것으로 나타났다. 주사전자현미경(SEM)과 에너지 분산 X선 분광기(EDX)와 X선 광전자 분광기(XPS)를 이용하여 판 구조의 지르코늄 전착물을 분석한 결과, 극미량의 알루미늄이 지르코늄-알루미늄 합금 형태로 존재하며, 전착물의 상단과 하단 간에 서로 다른 화학성분구조를 갖는 것으로 나타났다. $AlF_3$의 첨가는 전착물 내 잔류염 양을 줄이고, 지르코늄 회수를 위한 전류효율을 향상시키는 데 효과적인 것으로 나타났다.

Keywords

References

  1. J.P. Ackerman, "Chemical Basis for Pyrochemical Reprocessing of Nuclear Fuel", Ind. Eng. Chem. Res., 30, 141-145 (1991). https://doi.org/10.1021/ie00049a022
  2. J.J. Laidler, J.E. Battles, W.E. Miller, J.P. Ackerman, and E.L. Carls, "Development of Pyroprocessing Technology", Prog. Nucl. Energ., 31, 131-140 (1997). https://doi.org/10.1016/0149-1970(96)00007-8
  3. C.H. Lee, M.K. Jeon, C.M. Heo, Y.L. Lee, K.H. Kang, and G.I. Park, "Effect of Zr Oxide on the Electrochemical Dissolution of Zircaloy-4 Cladding Tubes", J. Electrochem. Soc., 159, E171-E176 (2012). https://doi.org/10.1149/2.031212jes
  4. T.S. Rudisill, "Decontamination of Zircaloy Cladding Hulls from Spent Nuclear Fuel", J. Nucl. Mater., 385, 193-195 (2009). https://doi.org/10.1016/j.jnucmat.2008.10.016
  5. U.S. Japan Joint Nuclear Energy Action Plan Waste Management Working Group Phase I Report, U.S. Department of Energy, FCR&D-USED-2010-000051 (2010).
  6. M.K. Jeon, K.H. Kang, G.I. Park, and Y.S. Lee, "Chlorination Reaction Behavior of Zircaloy-4 Hulls: Experimental and Theoretical Approaches", J. Radioanal. Nucl. Chem., 292, 513-517 (2012). https://doi.org/10.1007/s10967-011-1435-x
  7. C.H. Lee, K.H. Kang, M.K. Jeon, C.M. Heo, and Y.L. Lee, "Electrorefining of Zirconium from Zircaloy-4 Cladding Hulls in LiCl-KCl Molten Salts", J. Electrochem. Soc., 159, D463-D468 (2012). https://doi.org/10.1149/2.012208jes
  8. G.J. Kipouros and S.N. Flengas, "Electrorefining of Zirconium Metal in Alkali Chloride and Alkali Fluoride Fused Electrolytes", J. Electrochem. Soc., 132, 1087-1098 (1985). https://doi.org/10.1149/1.2114020
  9. J.A. Gurklis, J.G. Beach, and C.L. Faust, Report No. BMI-781, Battelle Memorial Institute, Columbus, Ohio (1952).
  10. G.W. Mellors and S. Senderoff, "The Electrodeposition of Coherent Deposits of Refractory Metal III. Zirconium", J. Electrochem. Soc., 113, 60-66 (1966). https://doi.org/10.1149/1.2423865
  11. C.H. Lee, D.Y. Kang, M.K. Jeon, K.H. Kang, S.-W. Paek, D.-H. Ahn, and K.-T. Park, "Addition Effect of Fluoride Compounds for Zr Electrorefining in LiCl-KCl Molten Salts", Int. J. Electrochem. Sci., 11, 566-576 (2016).
  12. S. Ghosh, S. Vandarkuzhali, N. Gogoi, P. Venkatesh, G. Seenivasan, B.P. Reddy, and K. Nagarajan, "Anodic Dissolution of U, Zr and U-Zr Alloy and Convolution Voltammetry of $Zr^{4+}{\mid}Zr^{2+} $ Couple in Molten LiCl-KCl Eutectic", Electrochim. Acta, 56, 8204-8218 (2011). https://doi.org/10.1016/j.electacta.2011.06.027
  13. J. Park, S. Choi, S. Sohn, and I.S. Hwang, "Cyclic Voltammetry on Zr, Sn, Fe, Cr and Co in LiCl-KCl Salts at $500^{\circ}C$ for Electrorefining of Irradiated Zircaloy-4 Cladding", J. Electrochem. Soc., 164, D744-D751 (2017). https://doi.org/10.1149/2.1501712jes
  14. A. Girginov, T.Z. Tzvetkoff, and M. Bojinov, "Electrodeposition of Refractory Metals (Ti, Zr, Nb, Ta) from Molten Salt Electrolytes", J. Appl. Electrochem., 25, 993-1003 (1995). https://doi.org/10.1007/BF00241947
  15. M. Alatalo, M. Weinert, and R.E. Watson, "Stability of Zr-Al Alloys", Phys. Rev. B, 57, R2009 (1998). https://doi.org/10.1103/PhysRevB.57.R2009
  16. M. Li, D. Constantinescu, L. Wang, A. Mohs, and J. Gmehling, "Solubilities of NaCl, KCl, LiCl, and LiBr in Methanol, Ethanol, Acetone, and Mixed Solvents and Correlation Using the LIQUAC Model", Ind. Eng. Chem. Res., 49, 4981-4988 (2010). https://doi.org/10.1021/ie100027c
  17. J.H. Scofield, "Hartree-Slater Subshell Photoionization Cross-sections at 1254 and 1487 eV", J. Electron Spectrosc. Relat. Phenom., 8, 129-137 (1976). https://doi.org/10.1016/0368-2048(76)80015-1