• Title/Summary/Keyword: 한류기

Search Result 379, Processing Time 0.031 seconds

The Short Circuit Analysis of a Simplified Magnetic Shielding Type High-Tc Superconducting Fault Current Limiter (단순화된 자기차폐형 고온초전도한류기 단락 특성 해석)

  • 이찬주;이승제;장미혜;현옥배;최효상;고태국
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 1999.02a
    • /
    • pp.97-100
    • /
    • 1999
  • Nowadays the high-Tc Superconducting Fault current Limiter (SFCL) is one of the superconducting devices which are very closed to commercialization. The most popular model of High-Tc SFCL is a magnetic shielding type. A superconductor of magnetic shielding type SFCL can be stable in the superconducting state, because there is no contact between the superconductor and the normal conductor. But this model needs large place to set up and in a fault condition, mechanical vibrations may happen to damage the superconductor or total device. In this paper, to solve these problems, the simplified model of magnetic shielding type SFCL was introduced.

  • PDF

A Study on the Application Analysis of the Resistive type Superconducting Fault Current Limiters using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 저항형 초전도한류기의 계통적용분석 연구)

  • Heo Tae Jeon;Bang Jong Hyun;Bae Hyeong Thaek;Park Min Won;Yu In Keun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.1
    • /
    • pp.25-31
    • /
    • 2005
  • Since the discovery of the high temperature superconductors many researches have been performed for the practical applications of superconductivity technologies in various fields. As results, significant progress has been achieved. Especially, Superconducting Fault Current Limiter (SFCL) offers an attractive means In limit fault current in power systems. HTS resistive type SFCL is based on the ultra fast transition from the superconducting (non resistive) state to the normal (resistive) state by overstepping the critical current density, In this study, the simulation method of resistive type superconducting fault current limiter using EMTDC is proposed and the developed EMTDC model of SFCL is applied to the modeled power network using the Parameters of real system.

Development of EMTDC model for Resistance type Fault Current Limiter considering transient characteristic (저항형초전도한류기 과도특성을 고려한 EMTDC 모델개발)

  • 윤재영;김종율;이승렬
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.2
    • /
    • pp.1-7
    • /
    • 2003
  • Nowadays, one of the serious problems in KEPCO(Korea Electric Power Co-Operation) system is the more higher fault current than the SCC(Short Circuit Capacity) of circuit breaker. There are many alternatives to reduce the increased fault current such as isolations of bus ties, enhancement of SCC of circuit breaker, applications of HVDC-BTB(High Voltage Direct Current-Back to Back) and FCL(fault current limiter). But, these alternatives have some drawbacks in viewpoints of system stability and cost. As the superconductivity technology has been developed, the HTS-FCL(High Temperature Superconductor -Fault Current Limiter) can be one of the attractive alternatives to solve the fault current problem. Under this background, this paper presents the EMTDC(Electro-Magnetic Transient Direct Current) model for resistance type HTS-FCL considering the nonlinear characteristic of final resistance value when quenching phenomena occur.

Current Limiting Characteristics of Superconducting Fault Current Limiter for Reduction of Unsymmetrical Fault Current in a Three-Phase Power System (삼상전력계통의 비대칭고장전류 저감을 위한 초전도한류기의 전류제한특성)

  • Kim, Min-Yeong;Lim, Sung-Hun;Hwang, Jong-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03b
    • /
    • pp.8-8
    • /
    • 2010
  • In this paper, the limiting characteristics of the fault current in a power system with a superconducting fault current limiter(SFCL) applied into neutral line of main transformer in a distribution power line were analyzed. The SFCL applied into the neutral line of main transformer power system can limit the unsymmetrical fault current from the single-line ground fault or the double-line ground fault. In addition, it could be decreased a number of SFCL and a load. This method could be expected to reduction of a power loss in the neutral line, because of a neutral line current is zero in ordinary times.

  • PDF

Fabrication and Test of the 3.8 ㎸ Resistive SFCL Based on YBCO Films (3.8 ㎸급 7직렬 저항형 고온초전도한류기의 제작 및 시험)

  • 심정욱;김혜림;현옥배;박권배;이방욱;강종성;오일성
    • Progress in Superconductivity
    • /
    • v.5 no.2
    • /
    • pp.136-140
    • /
    • 2004
  • We fabricated and tested a resistive superconducting fault current limiters (SFCL) operated at 3.8 ㎸ based on YBCO thin films. The SFCL was composed of 7 components connected in series. Each component was designed to be capable of current limiting at 600 V, and has a SiC shunt resistor ( $R_{s}$) of 40 Ω in Parallel. Short circuit tests were carried out fur 0 and 90 degree faults lasting fur 5 cycles. The test results showed that the 7 components were quenched simultaneously under the safe quenches and evenly shared the applied voltage. The SFCL successfully suppressed the fault currents below 94 $A_{peak}$ within the quarter cycle after fault.t.t.

  • PDF

Analysis on Current Limiting Characteristics of Double Quench Flux-Lock Type SFCL Using Its Third Winding (삼차권선을 이용한 이중퀜치 자속구속형 초전도한류기의 전류제한 특성 분석)

  • Han, Tae-Hee;Lim, Sung-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.5
    • /
    • pp.289-293
    • /
    • 2016
  • The flux-lock type superconducting fault current limiter (SFCL) connects the two parallel windings in parallel with a ferromagnetic core. We suggest that the double quench flux-lock type SFCL should add a third winding. We analyzed characteristics of the fault current and the peak current using the quench of the high-Tc superconducting element. The proposed SFCL's inductances of a primary winding and the third winding were fixed and the amplitude of inductance of the secondary winding was changed. We found that the fault current can be more effectively controlled through the analysis of the equivalent circuit and the short-circuit tests.

Analysis on Power Burden of HTSC Module due to Fault Current's Amplitude of a Flux-Lock Type SFCL with Two Triggering Currents (두 트리거 전류를 갖는 자속구속형 초전도한류기의 고장전류 크기에 따른 초전도 모듈의 전력부담 분석)

  • Han, Tae-Hee;Lim, Sung-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.7
    • /
    • pp.424-428
    • /
    • 2016
  • In this paper, the power burden of High-TC superconducting (HTSC) module comprising the flux-lock type superconducting fault current limiter (SFCL) with two triggering currents during the fault period was analyzed. The short-circuit tests for the simulated power system with the SFCL in the different fault positions, which were expected to affect the amplitude of the fault current, were carried out. Through the comparative analysis on the power burden of the HTSC modules, the proposed flux-lock type SFCL was confirmed to be effective to divide into two power burdens according to the amplitude of the fault currents.

Analysis on Fault Current Limiting Characteristics of Flux-Lock Type SFCL Using Magnetic Flux Application Circuit (자기인가회로를 이용한 자속구속형 초전도한류기의 고장전류제한 특성 분석)

  • Go, Ju-Chan;Lim, Seung-Taek;Lim, Sung-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.1
    • /
    • pp.37-41
    • /
    • 2017
  • In this paper, the fault current limiting characteristics of the flux-lock type SFCL (superconducting fault current limiter) using magnetic application circuit were analyzed. The flux-lock type SFCL has the structure to install the magnetic application circuit, which can increase the resistance of HTSC ($high-T_C$ superconducting element comprising) the SFCL. To analyze the fault current limiting effect of the flux-lock type SFCL through the magnetic flux application circuit, the flux-lock type SFCL either with the magnetic flux circuit or without the magnetic flux circuit was constructed and the fault current limiting characteristics of the SFCL were compared each other through the short-circuit tests.

Analysis on Operating Characteristics according to Applied Location of SFCL in a Power Transmission System (모의송전계통에서 고장전류 저감을 위한 초전도한류기 적용위치에 따른 동작특성 분석)

  • Lee, Hyeong-Jin;Park, Han-Min;Kim, Jin-Seok;Sung, In-Je;Lim, Sung-Hun;Kim, Jae-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1104-1105
    • /
    • 2015
  • Recently, electric power demand increase due to the rapid industrial development. As a result, a power system has been expanded and fault currents are raised. Fault current is detriment effect on protective equipment. Superconducting fault current limiter(SFCL) is one of the solution to solve the fault current reduction. This paper analyzed operating characteristics according to applied location of SFCL in a transmission power system through the PSCAD/EMTDC simulation.

  • PDF

Operating properties of superconducting fault current limiters with a sing1e line-to-ground fault in a three-phase system (3상 전력계통의 1선 지락사고에 대한 초전도한류기의 동작특성)

  • 최효상;현옥배;김혜림;황시돌;차상도
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.261-262
    • /
    • 2003
  • We performed unsymmetrical analysis of a single line-to-ground fault in a three-phase system. The current limiting elements were meander type YBCO stripes coated with Au shunt. When the fault occurred, short circuit currents were effectively limited within 1-2 msec after fault instant. The unsymmetrical rate of fault phase was distributed from 6.4 to 1.4 and most of the fault current flowed in the grounding line due to its direct grounding system.

  • PDF