Browse > Article
http://dx.doi.org/10.4313/JKEM.2017.30.1.37

Analysis on Fault Current Limiting Characteristics of Flux-Lock Type SFCL Using Magnetic Flux Application Circuit  

Go, Ju-Chan (School of Electrical Engineering, Soongsil University)
Lim, Seung-Taek (School of Electrical Engineering, Soongsil University)
Lim, Sung-Hun (School of Electrical Engineering, Soongsil University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.30, no.1, 2017 , pp. 37-41 More about this Journal
Abstract
In this paper, the fault current limiting characteristics of the flux-lock type SFCL (superconducting fault current limiter) using magnetic application circuit were analyzed. The flux-lock type SFCL has the structure to install the magnetic application circuit, which can increase the resistance of HTSC ($high-T_C$ superconducting element comprising) the SFCL. To analyze the fault current limiting effect of the flux-lock type SFCL through the magnetic flux application circuit, the flux-lock type SFCL either with the magnetic flux circuit or without the magnetic flux circuit was constructed and the fault current limiting characteristics of the SFCL were compared each other through the short-circuit tests.
Keywords
Flux-lock type SFCL (superconducting fault current limiter); Magnetic flux application circuit; Fault current limiting characteristics;
Citations & Related Records
연도 인용수 순위
  • Reference
1 E. Thuries, V. D. Pham, Y. Laumond, U. Verhaege, A, Fevrier, M. Collet, and M. Bekhaled, IEEE Trans. On Power Del., 6, 2 (1991). [DOI: http://dx.doi.org/10.1109/61.131138]   DOI
2 H. Kado and M. Ichikawa, IEEE Trans. on Appl. Supercond., 7, 2 (1997). [DOI: http://dx.doi.org/10.1109/77.614672]
3 B. Gromoll, G. Ries, W. Schmidt, H. P. Kramer, and H. W. Neumuller, IEEE Trans. on Appl. Supercond., 7, 2 (1997). [DOI: http://dx.doi.org/10.1109/77.614631]
4 H. Yamaguchi, T. Kataoka, K. Yaguchi, S. Fujita, K. Yoshikawa, and K. Kaiho, IEEE. Trans. Appl. Supercond., 14, 2 (2004). [DOI: http://dx.doi.org/10.1109/TASC.2004.840820]   DOI
5 H. Shimizu, Y. Yokomizu, T. Matsumura, and N. Murayama, IEEE Trans. Appl. Supercond., 12, 1 (2002). [DOI: http://dx.doi.org/10.1109/TASC.2002.1018344]   DOI
6 M. Ichikawa, H. Kado, M. Shibuya, M. Kojima, M. Kawahara, and T. Matsumura, IEEE Trans. on Appl. Supercond., 13, 2 (2003).
7 A. Hekmati, M. Hosseini, M. Vakilian, and M. Fardmanesh, Physica C, 472, 39 (2012). [DOI: http://dx.doi.org/10.1016/j.physc.2011.10.007]   DOI
8 S. H. Lim, IEEE Trans. Appl. Supercond., 17, 2 (2007). http://dx.doi.org/10.1109/TASC.2007.903960]   DOI
9 S. H. Lim and H. S. Choi, Physica C, 445, 1073 (2006). [DOI: https://doi.org/10.1016/j.physc.2006.05.027]
10 S. H. Lim, J. F. Moon, and J. C. Kim, IEEE Trans. on Appl. Supercond., 19, 3 (2009). [DOI: https://doi.org/10.1109/TASC.2009.2018053]   DOI
11 S. H. Lim, S. Ko, and T. H. Han, Physica C, 484, 253 (2013). [DOI: https://doi.org/10.1016/j.physc.2012.03.011]   DOI
12 S. C. Ko, T. H. Han, and S. H. Lim, Physics Procedia, 45, 305 (2013). [DOI: https://doi.org/10.1016/j.phpro.2013.05.028]   DOI