Browse > Article
http://dx.doi.org/10.4313/JKEM.2016.29.5.289

Analysis on Current Limiting Characteristics of Double Quench Flux-Lock Type SFCL Using Its Third Winding  

Han, Tae-Hee (Department of Aero Materials Engineering, Jungwon University)
Lim, Sung-Hun (School of Electrical Engineering, Soongsil University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.29, no.5, 2016 , pp. 289-293 More about this Journal
Abstract
The flux-lock type superconducting fault current limiter (SFCL) connects the two parallel windings in parallel with a ferromagnetic core. We suggest that the double quench flux-lock type SFCL should add a third winding. We analyzed characteristics of the fault current and the peak current using the quench of the high-Tc superconducting element. The proposed SFCL's inductances of a primary winding and the third winding were fixed and the amplitude of inductance of the secondary winding was changed. We found that the fault current can be more effectively controlled through the analysis of the equivalent circuit and the short-circuit tests.
Keywords
Flux-lock type superconducting fault current limiter (SFCL); Fault current; Inductance; Quench; High-Tc superconducting element;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. W. Lee, J. S. Kang, K. B. Park, and I. S. OH, Superconductivity and Cryogenics, 5, 10 (2003).
2 G. W. Lee, Superconductivity and Cryogenics, 3, 8 (2001).
3 E. Thuries, V. D. Pham, Y. Laumond, U. Verhaege, A, Fevrier, M. Collet, and M. Bekhaled, IEEE Trans. On Power Del., 6 (1991).
4 L. Ye and K. P. Juengst, IEEE Trans. on Appl. Supercond., 14, 2 (2004). [DOI: http://dx.doi.org/10.1109/TASC.2004.828450]   DOI
5 A. Hekmati, M. Hosseini, M. Vakilian and M. Fardmanesh, Physica C, 472, 39 (2012). [DOI: http://dx.doi.org/10.1016/j.physc.2011.10.007]   DOI
6 M. Ichikawa, H. Kado, M. Shibuya and T. Matsumura, IEEE Trans. on Appl. Supercond., 13, 2 (2003).
7 H. S. Choi and S. H. Lim, IEEE Trans. on Appl. Supercond., 17, 2 (2007). [DOI: http://dx.doi.org/10.1109/TASC.2007.903960]   DOI
8 S. H. Lim, T. H. Han, S. W. Yim, H. S. Choi, and B. S. Han, IEEE Trans. on Appl. Supercond., 17, 2 (2007). [DOI: http://dx.doi.org/10.1109/TASC.2007.903960]   DOI
9 S. H. Lim, H. S. Choi, and B. S. Han, Physica C, 416, 34 (2004). [DOI: http://dx.doi.org/10.1016/j.physc.2004.08.019]   DOI
10 S. H. Lim, H. S. Choi, D. C. Chung, S. C. Ko, and B. S. Han, IEEE Trans. on Appl. Supercond., 15, 2 (2005). DOI: http://dx.doi.org/10.1109/TASC.2005.851659]   DOI
11 S. H. Lim, Physica C, 468, 2076 (2008). [DOI: http://dx.doi.org/10.1016/j.physc.2008.05.130]   DOI
12 S. H. Lim, S. C. Ko, and T. H. Han, Physics Procedia, 45, 301 (2013). [DOI: http://dx.doi.org/10.1016/j.phpro.2013.05.027]   DOI