• Title/Summary/Keyword: 피로수명최적화

Search Result 36, Processing Time 0.051 seconds

Fatigue Life and Cumulative Damage Analysis in the Pavement Structure by Mechano-Lattice Theory (기계적 격자이론에 의한 도로포장 구조물의 피로수명과 누적손실분석)

  • 임평남
    • Journal of Korean Society of Transportation
    • /
    • v.6 no.2
    • /
    • pp.21-33
    • /
    • 1988
  • 부적정한 도로포장 구조물의 설정 및 유지보수의 적정관리 미흡으로 표면의 피해와 소성변형이 장기간 발생된다. 이로 인한 가요성 통제 구조물의 파괴 원인은 일반적으로 포 장재료의 동질성, 선형탄성 상태의 가정 하에서 분석되었다. 그러나 아스팔트 재료의 특성은 엄밀히 분석해서 완전한 선형탄성이라고는 볼 수 없음은 잘 알려져 있다. 따라서 근본적으 로 포장체의 수명과 파양 예측에 오류 발생가능성이 높다 하겠다. 금번 연구는 이와 같은 종전의 경험적인 선형탄성 방법이 아닌 탄성일소성 상태하의 격자(mechano-lattice) 이론이란 새로운 기법을 도입하였다. 특히 마이너(Miner's Law) 이론의 누적손실과 확률을 적용하여 포장체의 피노수명과 손실을 예측할 수 있다. 금번 이론은 실제로 호주 빅토리아주의 멜보른(Melbourne)시 일부 지역구간을 모형으 로 선정되었다. 분석결과 가장 최적화된 도로포장 각층의 두께와 재료 선정을 하기 위하여 일정기간의 교통량, 상대적 손실지수와 잔여응력 및 표면 변위, 대기온도 그리고 습도의 영 향을 종합적으로 고려하여야 한다.

  • PDF

A Study on the Structural Integrity of the First Stage Turbine Blade Caused by Thermal Barrier Coatings and the Cooling Design of the Nozzle (터빈 노즐 및 열차폐 코팅에 따른 고압 1 단 터빈 블레이드의 구조 건전성 영향에 대한 연구)

  • Huh, Jae Sung;Kang, Young Seok;Rhee, Dong Ho
    • Transactions of the KSME C: Technology and Education
    • /
    • v.4 no.2
    • /
    • pp.93-99
    • /
    • 2016
  • High pressure nozzles and turbines of a gas turbine engine should be required to be operated under extreme operating conditions in order to maximize the performance. Engine manufactures have utilized nickel-base superalloys, enhanced cooling design, and thermal barrier coating techniques to overcome them and furthermore, material modeling, finite element analysis, optimization techniques, and etc. have been utilized widely for elaborate predictions. We aim to evaluate the effects on the low cycle fatigue life of the high pressure turbine blade caused by thermal barrier coatings and the cooling design of the endwall of the first stage turbine nozzle. To achieve it, the structural analysis, which utilized the results of conjugate heat transfer analysis as loading boundary conditions, was performed and then the results were the input for the assessment of low cycle fatigue life at several critical zones.

Vehicle NVH Development Process (NVH 개발 프로세스)

  • Leuridan, Jan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.05a
    • /
    • pp.348-348
    • /
    • 2010
  • 신 차종의 개발 시, 기존 차량 모델을 사용하여 재 설계하는 방식에 의해 전례 없이 빠르게 차량 개발을 수행하고 있다. 또한 대부분의 이들 후속 차량은 공통 플렛폼 상에 설계되고 있으며, 일반적으로 충격, 구조 건전성, 생산 타당성 검토 등의 컴퓨터 시뮬레이션은 개발 프로세서 초기 단계에서 행하여 지고 있으나. NVH 엔지니어링은 차량 개발 프로세스의 매우 중요한 과정으로 되어 있음에도 불구하고, 실내 소음, 진동 승차감, 피로 수명 예측 등은 사용되는 해석 모델의 크기 및 복잡성으로 인하여 이들 성능 특성 평가 및 최적화는 아직 도전 과제이며, 본 논문에서는 몇몇 선진 OEM에서 수행되고 있는 NVH 개발 프로세스와 이를 가능케 하는 기법을 소개한다.

  • PDF

Shape Optimization Considering Fatigue Life of Pulley in Power-Steering Pulley (파워스티어링 오일펌프용 풀리의 피로수명을 고려한 형상최적화)

  • Shim, Hee-Jin;Kim, Jung-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.9 s.252
    • /
    • pp.1041-1048
    • /
    • 2006
  • The pulley is one of core mechanical elements in the power steering system for vehicles. The pulley operates under both the compressive loading and the torque. Therefore, to assure the safety of the power steering system, it is very important to investigate the durability and the optimization of the pulley. In this study, the applied stress distribution of the pulley under high tension and torsion loads was obtained by using finite element analysis. Based on these results the fatigue life of the pulley with the variation of the fatigue strength was evaluated by a durability analysis simulator. The results at 50% and 1% for the failure probability were compared with respect to the fatigue life. In addition to the optimum design for the fatigue life is obtained by the response surface method. The response function utilizes the function of the life and weight factors. Within range for design life condition the minimization of the weight, one of the formulation, is obtained by the optimal design. Moreover the optimum design by considering its durability and validity is verified by the durability test.

Design and evaluation of renovated NSI T/O PC sleeper (개량형 NSI 분기기용 PC침목 설계와 성능평가)

  • Park, Choon-Bok;Kwon, Ho-Jin;Lee, Young-Sou;Yoon, Byung-Hyun;Shin, Won-Sun
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1129-1137
    • /
    • 2007
  • 50kg NSI PCT(Prestress Concrete Timber, sleeper) is developed for the purpose of low maintenance cost, Extend life cycle, Track stability, Friendly Environment, Good running quality. In this study, as a part of research which is to make renovated NSI turnout, the main objective of this study is the optimization of PC sleeper's section, the number of PS tension wire. For this purpose, the finite element analysis was conducted to evaluate the serviceability and the safety of NSI PC sleeper developed.

  • PDF

Shape Design of FPCB Connector to Improve Assembly Performance (체결 성능 향상을 위한 FPCB 커넥터의 형상설계)

  • Kim, Dae-Young;Park, Hyung-Seo;Kim, Woong-Kyeom;Pyo, Chang-Ryul;Kim, Heon-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.3
    • /
    • pp.347-353
    • /
    • 2012
  • Recently, multi-functionalization (as in smart phones) has been in demand, and the connectors connecting the electrical signals of each board in a cellular phone have become key components. The miniaturization of these connectors is required to achieve a finer pitch design and enhance the electrical signal transfer capacity. However, the miniaturization of connectors reduces the structural safety, and a finer pitch design may cause contact problems under external impact. In this paper, a preliminary design for miniaturized, finer-pitch connectors is suggested for a product with 50 pins and a thickness of 0.2 mm. The assembly process of the FPCB (Flexible Printed Circuit Board) and connector was simulated to ensure the holding force between the two components and avoid overstressing. The design optimization process was performed with the Taguchi method. Fatigue analysis was also conducted to predict the fatigue life of the terminal, and the theoretical and experimental results were compared.

A Study on the Life Management and Improvement of Vulnerable Parts of Aircraft Structures (항공기 구조 수명관리 및 취약부위 개선에 관한 연구)

  • Choi, Hyoung Jun;Park, Sung Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.638-644
    • /
    • 2020
  • This study examines cracks that occur under the load of an aircraft. The life of aircraft vulnerability structures was analyzed and structural fitting improvements were made. Structural integrity and safety have been achieved through preemptive life expectancy and life management of aircraft structures. The crack size inspection capability of the aircraft under analysis is 0.03inch, compared with 0.032inch, which is the lowest of the three vulnerable parts. In addition, the fatigue life analysis results in approximately 1450 operating hours, the lowest of the three vulnerable parts relative to the aircraft's required life of more than 15000 operating hours, which increased the repeat count of the aircraft's initial and re-inspection times, and hence raised the resulting costs and manpower consumption. Finally, the features were improved through structural fitting of the identified three weak parts. The lowest critical crack size was secured at 0.13 through increased structural resistance to generated cracks and increased aircraft safety. The lowest structural fatigue life for cracks occurring during aircraft operation is 25000 operating hours, which are analyzed above the required structural life, resulting in more optimized improvements than the repair costs and excessive fitting range caused by cracks and fractures.

Optimization of District Heating Pipes Considering Thermal Fatigue Life (열피로 수명을 고려한 지역난방 배관의 최적화)

  • Ahn Min-Yong;Chang Yoon-Suk;Choi Jae-Boong;Kim Sang-Ho;Kim Youn-Hong;Kim Young-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.6 s.183
    • /
    • pp.143-150
    • /
    • 2006
  • Recently, in proportion to increased demand on environmentally-friendly heat source, efficient management of district heating(DH) system becomes one of important issue. The objectives of this paper are to systematize data processing of transition temperature, investigate the effect of temperature variations on thermal fatigue and find out a way to improve design fractures of Korean DH pipes. For this purpose, reliable fatigue lift evaluation procedures are examined and applied to quantify thermal fatigue lives. Also, as a prototypal optimization analysis results, mean value of original cross sectional area of selected pipes was reduced 18.6% sustaining their sufficient margins against fatigue failure. So, it is anticipated that the output of this research can be used as useful information of optimal design and operation in the future.

Shape Optimization for Opening Mode in Fracture Mechanics (열림 모드에 대한 형상 최적화)

  • 한석영;송시엽
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.40-45
    • /
    • 2001
  • The relationship between structural geometry and number of life cycles to failure is investigated to improve the fatigue life of structural components. The linear elastic fracture mechanics(LEFM) approach is integrated with shape optimal design methodology. The primary objective of this study is to decide an optimal shape for enhancing the life of the structure. The results from LEFM analyses are used in the fatigue model to predict the life of the structure before failure is occurred. The shape of the structure is optimized by using the growth strain method. Relevant issues such as problem formulation, finite element modeling are explained. Three design examples are solved, and the results show that, with proper shape changes, the life of structural systems subjected to fatigue loads can be enhanced significantly.

  • PDF

Shape Optimization of Structures in Opening Mode (열림 파괴양식에 대한 구조물의 형상 최적화)

  • 한석영;송시엽
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.141-149
    • /
    • 2002
  • Most of mechanical failures are caused by repeated loadings and therefore they are strongly related to fatigue. To avoid the failures caused by fatigue, determination of an optimal shape of a structure is one of the very important factors in the initial design stage. Shape optimization for three types of specimens, which are very typical ones in opening mode in fracture mechanics, was accomplished by the linear elastic fracture mechanics and the growth-strain method in this study. The linear elastic fracture mechanics was used to estimate stress intensity factors and fatigue lives. And the growth-strain method was used to optimize the shape of the initial shape of the specimens. From the results of the shape optimization, it was concluded that shapes of three types of specimens optimized by the growth-strain method prolong their fatigue lives very much.