Shape Optimization of Structures in Opening Mode

열림 파괴양식에 대한 구조물의 형상 최적화

  • Published : 2002.03.01

Abstract

Most of mechanical failures are caused by repeated loadings and therefore they are strongly related to fatigue. To avoid the failures caused by fatigue, determination of an optimal shape of a structure is one of the very important factors in the initial design stage. Shape optimization for three types of specimens, which are very typical ones in opening mode in fracture mechanics, was accomplished by the linear elastic fracture mechanics and the growth-strain method in this study. The linear elastic fracture mechanics was used to estimate stress intensity factors and fatigue lives. And the growth-strain method was used to optimize the shape of the initial shape of the specimens. From the results of the shape optimization, it was concluded that shapes of three types of specimens optimized by the growth-strain method prolong their fatigue lives very much.

Keywords

References

  1. 이억섭, 김동준, 류황희, '혼합모드하중에서의 피로균열전파방향과 피로수명 예측,' 대한기계학회논문집(A), 제23권 제9호, pp.1550-1558, 1999
  2. 홍장우, 진근찬, 이성근, 김종배, '5083-H115 알루미늄 합금의 혼합 모우드 피로 균열성장 특성,' 대한기계학회논문집, 제13권 제3호, pp.461-471, 1989
  3. G. C. Sih, 'Strain-Energy-Density Factor Applied to Mixed Mode Crack Problems,' Int. J. of Fracture Vol.10, pp.305-321, 1974 https://doi.org/10.1007/BF00035493
  4. A. K. Wong, 'On the Application of the Strain Energy Density Theory in Predicting Crack Initiation and Angle of Growth,' Eng. Fracture Mech. Vol.27, pp.157-170, 1987 https://doi.org/10.1016/0013-7944(87)90165-2
  5. J. G. Williams, P. D. Ewing, 'Fracture under Complex Stress-The Angled Crack Problem,' Int. J. Fracture Mech. Vol.8, pp.441-445, 1972
  6. 백태현, '혼합모드 크랙 선단응력의 광 탄성해석,' 대한기계학회논문집, 제16권 제11호, pp.2072-2081, 1992
  7. 송삼홍, 이경로, '피로균열개구거동을 이용한 짧은 균열의 거동 분석,' 한국 정밀공학회지, 제14권 제4호, pp.136-144, 1997
  8. L. Gani, S. D. Rajan, 'Use of Fracture Mechanics and Shape Optimization for Component Designs,' AIAA Journal Vol.37, No.2, pp.255-260, 1999 https://doi.org/10.2514/2.698
  9. 한석영, 배현우, '일반적인 2차원 구조물의 형상 최적화,' 대한기계학회논문집(A), 제23권 제9호, pp.1622-1627, 1999
  10. T. L. Anderson, Fracture Mechanics(Fundamentals and Applications), 2nd ed., CRC Press, 1995
  11. D. Barry, F. K. Z. Truman, 'An Evaluation of Fracture Mechanics Quarter-Point Displacement Techniques Used for Computing Stress Intensity Factors,' Engineering Structures Vol.21, pp.406-415, 1999 https://doi.org/10.1016/S0141-0296(97)00221-6
  12. H. L. J. Pang, 'Linear Elastic Fracture Mechanics Benchmarks: 2D Finite Element Test Cases,' Engineering Fracture Mechanics, Vol.44, No.5, pp.741-751, 1993 https://doi.org/10.1016/0013-7944(93)90203-5
  13. M. Shimoda, T. Sajura, Y. Kondo, H. Azegami, 'Shape Optimization of Solid Structures Using the Growth Strain Method(Application to Chassis Components),' SAE 1992 Transactions Vol.101, Section 6, pp.1136-1145, 1993
  14. I. L. Kim, L. W. Johnston, S. K. Choi, 'Comparison Between Various Displacement-Based Stress Intensity Factor Computation Techniques,' Intemational Journal of Fracture Vol.58, pp.193-210, 1992 https://doi.org/10.1007/BF00015615
  15. 홍기주, 강기주, "혼합모드 하중을 받는 CTS시험편에서 $K_{I}$, $K_{II}$와 J-적분의 측정방법,' 대한기계학회논문집(A), 제20권 제11호, pp.3498-3506, 1996
  16. H. Tada, P. C. Paris, G. R. Irwin, The Stress Analysis of Cracks Handbook, Del Research Corporation, 1973