• Title/Summary/Keyword: 프로세서전력소모

Search Result 163, Processing Time 0.025 seconds

Energy-aware EDZL Real-Time Scheduling on Multicore Platforms (멀티코어 플랫폼에서 에너지 효율적 EDZL 실시간 스케줄링)

  • Han, Sangchul
    • Journal of KIISE
    • /
    • v.43 no.3
    • /
    • pp.296-303
    • /
    • 2016
  • Mobile real-time systems with limited system resources and a limited power source need to fully utilize the system resources when the workload is heavy and reduce energy consumption when the workload is light. EDZL (Earliest Deadline until Zero Laxity), a multiprocessor real-time scheduling algorithm, can provide high system utilization, but little work has been done aimed at reducing its energy consumption. This paper tackles the problem of DVFS (Dynamic Voltage/Frequency Scaling) in EDZL scheduling. It proposes a technique to compute a uniform speed on full-chip DVFS platforms and individual speeds of tasks on per-core DVFS platforms. This technique, which is based on the EDZL schedulability test, is a simple but effective one for determining the speeds of tasks offline. We also show through simulation that the proposed technique is useful in reducing energy consumption.

Reconfigurable Architecture Design for H.264 Motion Estimation and 3D Graphics Rendering of Mobile Applications (이동통신 단말기를 위한 재구성 가능한 구조의 H.264 인코더의 움직임 추정기와 3차원 그래픽 렌더링 가속기 설계)

  • Park, Jung-Ae;Yoon, Mi-Sun;Shin, Hyun-Chul
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.1
    • /
    • pp.10-18
    • /
    • 2007
  • Mobile communication devices such as PDAs, cellular phones, etc., need to perform several kinds of computation-intensive functions including H.264 encoding/decoding and 3D graphics processing. In this paper, new reconfigurable architecture is described, which can perform either motion estimation for H.264 or rendering for 3D graphics. The proposed motion estimation techniques use new efficient SAD computation ordering, DAU, and FDVS algorithms. The new approach can reduce the computation by 70% on the average than that of JM 8.2, without affecting the quality. In 3D rendering, midline traversal algorithm is used for parallel processing to increase throughput. Memories are partitioned into 8 blocks so that 2.4Mbits (47%) of memory is shared and selective power shutdown is possible during motion estimation and 3D graphics rendering. Processing elements are also shared to further reduce the chip area by 7%.

A 3-GSymbol/s/lane MIPI C-PHY Transceiver with Channel Mismatch Correction Circuit (채널 부정합 보정 회로를 가진 3-GSymbol/s/lane MIPI C-PHY 송수신기)

  • Choi, Seokwon;Song, Changmin;Jang, Young-Chan
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1257-1264
    • /
    • 2019
  • A 3-GSymbol/s/lane transceiver, which supports the mobile industry processor interface (MIPI) C-physical layer (PHY) specification version 1.1, is proposed. It performs channel mismatch correction to improve the signal integrity that is deteriorated by using three-level signals over three channels. The proposed channel mismatch correction is performed by detecting channel mismatches in the receiver and adjusting the delay times of the transmission data in the transmitter according to the detection result. The channel mismatch detection in the receiver is performed by comparing the phases of the received signals with respect to the pre-determined data pattern transmitted from the transmitter. The proposed MIPI C-PHY receiver is designed using a 65 nm complementary metal-oxide-semiconductor (CMOS) process with 1.2 V supply voltage. The area and power consumption of each transceiver lane are 0.136 ㎟ and 17.4 mW/GSymbol/s, respectively. The proposed channel mismatch correction reduces the time jitter of 88.6 ps caused by the channel mismatch to 34.9 ps.

Dynamic Voltage Scaling Technique Considering Application Characteristics (응용 프로그램 특성을 고려한 동적 전압 조절 기법)

  • Cho, Young-Jin;Chang, Nae-Hyuck
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.12
    • /
    • pp.96-104
    • /
    • 2009
  • In the real system environments, the performance of the application is not linearly proportional to the clock frequency of the microprocessor, in contrast to the general assumption of conventional dynamic voltage scaling. In this paper, we analytically model the relation between the performance of the application and the clock frequency of the microprocessor, and introduce the energy-optimal scheduling algorithm for a task set with distinct application characteristics. In addition, we present a theorem for the energy-optimal scheduling, which the derivative of the energy consumption with respect to the execution time should be the same for all the tasks. The proposed scheduling algorithm always generates the energy-optimal scaling factor thanks to the theorem for energy-optimal scheduling. We achieved about 7% additional energy reduction in the experiments using synthetic task sets.

A Wavefront Array Processor Utilizing a Recursion Equation for ME/MC in the frequency Domain (주파수 영역에서의 움직임 예측 및 보상을 위한 재귀 방정식을 이용한 웨이브프런트 어레이 프로세서)

  • Lee, Joo-Heung;Ryu, Chul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.10C
    • /
    • pp.1000-1010
    • /
    • 2006
  • This paper proposes a new architecture for DCT-based motion estimation and compensation. Previous methods do riot take sufficient advantage of the sparseness of 2-D DCT coefficients to reduce execution time. We first derive a recursion equation to perform DCT domain motion estimation more efficiently; we then use it to develop a wavefront array processor (WAP) consisting of processing elements. In addition, we show that the recursion equation enables motion predicted images with different frequency bands, for example, from the images with low frequency components to the images with low and high frequency components. The wavefront way Processor can reconfigure to different motion estimation algorithms, such as logarithmic search and three step search, without architectural modifications. These properties can be effectively used to reduce the energy required for video encoding and decoding. The proposed WAP architecture achieves a significant reduction in computational complexity and processing time. It is also shown that the motion estimation algorithm in the transform domain using SAD (Sum of Absolute Differences) matching criterion maximizes PSNR and the compression ratio for the practical video coding applications when compared to tile motion estimation algorithm in the spatial domain using either SAD or SSD.

A Study for u-Healthcare Networking Technology Framework Approach Based on Secure Oriented Architecture(SOA) (Secure Oriented Architecture(SOA)에 기반한 u-Healthcare 네트워크 보안기술 프레임워크 모델)

  • Kim, Jeom Goo;Noh, SiChoon
    • Convergence Security Journal
    • /
    • v.13 no.4
    • /
    • pp.101-108
    • /
    • 2013
  • Sensor network configurations are for a specific situation or environment sensors capable of sensing, processing the collected information processors, and as a device is transmitting or receiving data. It is presently serious that sensor networks provide many benefits, but can not solve the wireless network security vulnerabilities, the risk of exposure to a variety of state information. u-Healthcare sensor networks, the smaller the sensor node power consumption, and computing power, memory, etc. restrictions imposing, wireless sensing through the kind of features that deliver value, so it ispossible that eavesdropping, denial of service, attack, routing path. In this paper, with a focus on sensing of the environment u-Healthcare system wireless security vulnerabilities factors u-Healthcare security framework to diagnose and design methods are presented. Sensor network technologies take measures for security vulnerabilities, but without the development of technology, if technology is not being utilized properly it will be an element of threat. Studies suggest that the u-Healthcare System in a variety of security risks measures user protection in the field of health information will be used as an important guide.

Design of an IMU-based Wearable System for Attack Behavior Recognition and Intervention (공격 행동 인식 및 중재를 위한 IMU 기반 웨어러블 시스템 개발)

  • Woosoon Jung;Kyuman Jeong;Jeong Tak Ryu;Kyoung-Ock Park;Yoosoo Oh
    • Smart Media Journal
    • /
    • v.13 no.5
    • /
    • pp.19-25
    • /
    • 2024
  • The biggest type of behavior that prevents people with developmental disabilities from entering society is aggressive behavior. Aggressive behavior can pose a threat not only to the personal safety of the person with a developmental disability, but also to the physical safety of others. In this study, we propose a wearable system using a low-power processor. The proposed system uses an IMU (Inertial Measurement Unit) to analyze user behavior, and when attack behavior is not detected for a certain period of time through an LED array attached to the developed system, an interesting LED is displayed. By expressing patterns, we provide behavioral intervention through compensation to people with developmental disabilities. In order to implement a system that must be worn for a long time in a power-limited environment, we present a method to optimize performance and energy consumption across all stages, from data preprocessing to AI model application.

The Design and Implementation of User Authorization Module based on Zigbee for Automotive Smart-key System (차량용 스마트키 시스템을 위한 지그비 기반의 사용자 인증 모듈 설계 및 구현)

  • Kim, Kyeong-Seob;Lee, Yun-Seob;Yun, Hyun-Min;Choi, Sang-Bang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.11
    • /
    • pp.2442-2450
    • /
    • 2010
  • Using sensor devices applied to various objects will be needed wireless network that it is easy to install in them. Tiny devices configured to processor that bas comparatively low computing ability are inappropriate to use devices that are wireless LAN, etc. In result, network devices needed to not only have simple communication protocol, but have Plug and Play function that it works as soon as it connects without installing any device driver. it also will industrially have both low power and low cost because of mobility of it. From IEEE 802.11 standard, WPAN(Wireless Personal Area Network) included in LAN is being developed by WPAN WG(Working Group) on area with low power consumption and low complexity. In addition to, it is standardizing MAC and PRY of the standard that is expected to wirelessly communicate within 10m. WPAN will be used generally in the more near future because of both low power and low cost of Zigbee. In this paper we designed zigbee based user authentication module for a automotive smart-key system.

Design and Implementation of FMCW Radar Signal Processor for Drone Altitude Measurement (드론 고도 측정용 FMCW 레이다 신호처리 프로세서 설계 및 구현)

  • Lim, Euibeen;Jin, Sora;Jung, Yongchul;Jung, Yunho
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.6
    • /
    • pp.554-560
    • /
    • 2017
  • Accurate altimetry is required for the reliable flight control of drones or unmanned air vehicles (UAVs), and the radar altimeter is commonly used owing to its accuracy for the ground level. Due to the limitation for size, weight and power consumption, the frequency modulated continuous wave (FMCW) radar is appropriate for drone because it has lower complexity than that of pulse Doppler (PD) radar. Especially, fast-ramp FMCW radar, which transmits linear FM signal during very short period, is generally utilized, because it is robust for the ego-motion of drone. Therefore, we present the design and implementation results of the radar signal processor (RSP) for fast-ramp FMCW radar system. The proposed RSP was designed with Verilog-HDL and implemented with Altera Cyclone-IV FPGA device. Implementation results show that the proposed RSP includes 27,523 logic elements, 15,798 registers and memory of 138Kbits and can measure the altimeter at the rate of 100Hz with the operating frequency of 50MHz.

A Design of Memory-efficient 2k/8k FFT/IFFT Processor using R4SDF/R4SDC Hybrid Structure (R4SDF/R4SDC Hybrid 구조를 이용한 메모리 효율적인 2k/8k FFT/IFFT 프로세서 설계)

  • 신경욱
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.2
    • /
    • pp.430-439
    • /
    • 2004
  • This paper describes a design of 8192/2048-point FFT/IFFT processor (CFFT8k2k), which performs multi-carrier modulation/demodulation in OFDM-based DVB-T receiver. Since a large size FFT requires a large buffer memory, two design techniques are considered to achieve memory-efficient implementation of 8192-point FFT/IFFT. A hybrid structure, which is composed of radix-4 single-path delay feedback (R4SDF) and radix-4 single-path delay commutator (R4SDC), reduces its memory by 20% compared to R4SDC structure. In addition, a memory reduction of about 24% is achieved by a novel two-step convergent block floating-point scaling. As a result, it requires only 57% of memory used in conventional design, reducing chip area and power consumption. The CFFT8k2k core is designed in Verilog-HDL, and has about 102,000 Bates, RAM of 292k bits, and ROM of 39k bits. Using gate-level netlist with SDF which is synthesized using a $0.25-{\um}m$ CMOS library, timing simulation show that it can safely operate with 50-MHz clock at 2.5-V supply, resulting that a 8192-point FFT/IFFT can be computed every 164-${\mu}\textrm{s}$. The functionality of the core is fully verified by FPGA implementation, and the average SQNR of 60-㏈ is achieved.