• Title/Summary/Keyword: 포화토

Search Result 264, Processing Time 0.024 seconds

A Study on the Removal of Ammonia by Using Peat Biofilter (미생물 활성토탄을 이용한 암모니아 제거에 관한 연구)

  • Choung, Youn Kyoo;Ahn, Jun Seong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.655-668
    • /
    • 1994
  • Conventional deodorization filters using soil and compost reach the capacity limitation of deodorization in short period, because its removal mechanism primarily depends on adsorption. Therefore, in this study the experiment was performed on the removal of ammonia which is a strong inorganic malodor, frequently emitted from night soil treatment plants and sewage treatment plants, by seeding activated sludges on the bio-peat containing higher organic contents, water conservation capacity, permeability and lower pressure drop. As a result, in raw peat filter natural ammonia outlet was observed in consequence of pH increase resulted from ammonia ionizing in liquid phase. Ammonia removal mechanism primarily depended on the adsorption onto the anion colloidal substances in peat. In peat bio-filter, theoretical ammonium salts ratio was higher than that of raw peat, resulted from slight pH increase by microorganism activity, however, the experimetal value of ammonia-nitrogen accumulated in bio-peat was lower than that of raw peat because of nitrification by nitrifying bacteria. In the initial reaction period, adsorption was predominant in the ammonia removal mechanism, but nitrification was conspicuous after the middle period. Mass balance of nitrogen was established using experimental data of input $NH_3$ loading, output $NH_3$ loading, $NH_4{^+}$-N, $NO_x$-N, and Org-N. The critical time of unsteady state, which is the maximum activating point of microorganism in bio-filter, was determined using experimental data, and the ammonia adsorption curve was computed using regression analysis. On the basis of the results obtained by above analysis, the delay days for the saturation of adsoption capacity in peat bio-filter was calculated.

  • PDF

Effects of Different Water Depths on Emergence of Barnyardgrass, Echinochloa crus-galli P. Beauv. (피의 발생(發生)에 미치는 담수심(湛水深)의 영향(影響))

  • Kang, Byeung-Hoa
    • Korean Journal of Weed Science
    • /
    • v.6 no.1
    • /
    • pp.7-12
    • /
    • 1986
  • This experiment was conducted to investigate effects of different water depths on emergence, emerged soil depth and growth of E. crus-galli in Seoul, Korea. Plant number of emergence was decreased with deepened water depth, and dry weight of plant was especially negatively affected. However, a few E. crus-galli were emerged under 24 cm water depth. Soil depth of germination was increased as water depth decreased, and a few E. crus-galli were emerged below 10 cm soil depth under - 12 ㎝ water depth. But most E. crus-galli were emerged in ca. 2 cm soil depth under water depth over 0 cm.

  • PDF

An Experimental Study on the Stability of Open-ended Pipe Piles Installed in Deep Sea during the Simulated Seaquake (해진시 심해에 설치된 개단말뚝의 안정성에 관한 모형실험 연구)

  • 남문석;최용규
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.3
    • /
    • pp.45-54
    • /
    • 1999
  • It is known from the previous study on the behavior of sharter single pile during simulated seaquake induced by the vertical component of earthquake that the compressive capacity and the soil plugging resistance of single open-ended pipe pile were completely degraded. But, the capacity of single open-ended pipe pile with greater penetration and the capacity of piles group with shorter penetration were expected to be stable after seaquake motion. In this study, first single pile, 2-pile or 4-pile groups with several simulated penetrations were driven into the calibration chamber with saturated fine medium sand and the compressive load test for each installed pile or pile groups was performed. Then, about 95% compressive load of the ultimate capacity was applied on the pile head during the simulated seaquake motion. Finally, to confirm the reduction of pile capacity during the simulated seaquake motion, the compressive load test for each single pile or pile groups after seaquake motion was performed. During the simulated seaquake, compressive capacities of single open-ended pipe pile and piles group installed in shallow sea were not decreased. But, the stability of open-ended pile installed in deep sea was depended on the pile penetration depth. So, single open-ended pile with greater penetration of 27 m was stable, and 2-pile and 4-pile groups with penetration more than 13m were stable. But, 2-pile groups with penetration of 7m was failed, and the compressive capacity of 4-pile groups with penetration of 7m was degraded about 15%.

  • PDF

Studies on the Causal Factors of Landslides on Limestone Soils in Pyeongchangkun (산사태(山沙汰) 발생요인(發生要因)에 관한 연구(硏究) -평창군(平昌郡) 석회암지대(石灰岩地帶)를 중심(中心)으로-)

  • Lee, Soo-Wook
    • Korean Journal of Agricultural Science
    • /
    • v.6 no.2
    • /
    • pp.125-133
    • /
    • 1979
  • The characteristics of landslides occurred in August 5, 1979 in pyeongchangkun were surveyed and indentified as follows. 1. Deep limestone regions. Distinct differences in soil texture between A1 and B horizon could be observed on soil profile, which is attributed to the clay illuviation. The clay illuvial horizon is supposed to be an important cause of large scale mudflows on middle slopes by the lubricant action of ground water flowing between top soil and subsoil. 2. Shallow limestone regions. Very shallow top soils (less than 50cm) laid on tilted bedrock stratification provide a proper condition of mass soil movement if the top soil is saturated and ground water flows between top soil and bedrock when concentrated heavy rainfalls shower. 3. Granite regions. Weathering granitic bedrock produces very coarse textured top soils which are very cohesionless and have many pores. Therefore, the soil has high infiltration ratio and is easy to be saturated by water and to be detached from the bedrock. The landslides abrase very severely both sides of gully with high potential energy when they flow down. The following methods for landslide prevention can be recommended. 1. The original parts of landslides on top of the gully must be treated by intensive planting of deep rooting species and check dams. 2. Clear-cutting and crop planting on steep slope (more than 25 degrees) should be controlled and prohibited. 3. Establishment of landslide prevention forest should be practised on proper site.

  • PDF

Seismic attenuation from VSP data in methane hydrate-bearing sediments (메탄 하이드레이트 부존 퇴적층으로부터 획득한 수직탄성파 (VSP) 자료에서의 탄성파 진폭 감쇠)

  • Matsushima, Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.1
    • /
    • pp.29-36
    • /
    • 2007
  • Recent seismic surveys have shown that the presence of methane hydrate (MH) in sediments has significant influence on seismic attenuation. I have used vertical seismic profile (VSP) data from a Nankai Trough exploratory well, offshore Tokai in central Japan, to estimate compressional attenuation in MH-bearing sediments at seismic frequencies of 30-110 Hz. The use of two different measurement methods (spectral ratio and centroid frequency shift methods) provides an opportunity to validate the attenuation measurements. The sensitivity of attenuation analyses to different depth intervals, borehole irregularities, and different frequency ranges was also examined to validate the stability of attenuation estimation. I found no significant compressional attenuation in MH-bearing sediments at seismic frequencies. Macroscopically, the peaks of highest attenuation in the seismic frequency range correspond to low-saturation gas zones. In contrast, high compressional attenuation zones in the sonic frequency range (10-20 kHz) are associated with the presence of methane hydrates at the same well locations. Thus, this study demonstrated the frequency-dependence of attenuation in MH-bearing sediments; MH-bearing sediments cause attenuation in the sonic frequency range rather than the seismic frequency range As a possible reason why seismic frequencies in the 30-110 Hz range were not affected in MH-bearing sediments, I point out the effect of thin layering of MH-bearing zones.

Soil-Water Characteristic Curve of Sandy Soils Containing Biopolymer Solution (바이오폴리머를 포함한 모래지반의 흙-습윤 특성곡선 연구)

  • Jung, Jongwon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.10
    • /
    • pp.21-26
    • /
    • 2018
  • Soil-water characteristic curve, which is called soil retention curve, is required to explore water flows in unsaturated soils, relative permeability of water in multi-phase fluids flow, and change to stiffness and volume of soils. Thus, the understanding of soil-water characteristic curves of soils help us explore the behavior of soils inclduing fluids. Biopolymers are environmental-friendly materials, which can be completely degraded by microbes and have been believed not to affect the nature. Thus, various biopolymers such as deacetylated power, polyethylene oxide, xanthan gum, alginic acid sodium salt, and polyacrylic acid have been studies for the application to soil remediation, soil improvement, and enhanced oil recovery. PAA (polyacrylic acid) is one of biopolymers, which have shown a great effect in enhanced oil recovery as well as soil remediation because of the improvement of water-flood performance by mobility control. The study on soil-water characteristic curves of sandy soils containing PAA (polyacrylic acid) has been conducted through experimentations and theoretical models. The results show that both capillary entry pressure and residual water saturation dramatically increase according to the increased concentration of PAA (polyacrylic acid). Also, soil-water characteristic curves by theoretical models are quite well consistent with the results by experimental studies. Thus, soil-water characteristic curves of sandy soils containing biopolymers such as PAA (polyacrylic acid) can be estimated using fitting parameters for the theoretical model.

Effect of Antecedent Rainfall on Infiltration Characteristics in Unsaturated Soil (선행강우의 영향에 따른 불포화토의 침투특성 분석)

  • Yoon, Gwi-Nam;Shin, Hosung;Kim, Yun-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.8
    • /
    • pp.5-15
    • /
    • 2015
  • One-dimensional rainfall laboratory tests using gneissic weathered soil were conducted to investigate effect of antecedent rainfall on infiltration characteristics. Experimental results using samples from Chuncheon and Chungju sites showed that rainfall onto the ground surface decreased initial negative pore water pressure of unsaturated soils, which recovered gradually after the end of rainfall. Rainfall intensity increases water infiltration rate, and infiltration rate during main rainfall is faster than that of the preceding rainfall. It is considered that higher water saturation after antecedent rainfall increases water infiltration rate during main rainfall. In particular, Chungju sample with higher clay content had slower recovery of negative pore water pressure and infiltration rate. Numerical results using finite element slope stability analysis showed that reduction of initial negative pore pressure due to rainfall infiltration deteriorates slope stability, and diffusion of pore water pressure after the end of rainfall further reduces FS of the slope in the short term. Main rainfall after prior rainfall further reduced factor of safety of the unsaturated slope. Pattern of antecedent rainfall has a significant impact on the magnitude and distribution of initial pore water pressure in unsaturated soils which are controlling factor to assess factor of safety of unsaturated slope during rainfall.

Physical Property Factors Controlling the Electrical Resistivity of Subsurface (지반의 전기비저항을 좌우하는 물성요인)

  • Park Sam-Gyu
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.2
    • /
    • pp.130-135
    • /
    • 2004
  • This paper describes the physical properties of the factors controlling the electrical resistivity of the subsurface. Resistivities of various types of soil and rock samples saturated with sodium chloride solutions having nine different concentrations were measured, and the measured resistivities of these samples were compared with calculated resistivities obtained using the conventional empirical formulas. From the results obtained, we observed that the resistivity of the soil and rock samples increases with increasing in pore-fluids resistivity regardless of the media type. However, between 20 and 200 ohm-m, which is the normal range of resistivity of groundwater, the resistivity of the pore-fluids have little or no effect on the resistivities of the samples used. Below 10 ohm-m, the resistivities of the samples are mainly controlled by the pore-fluids, whereas, in the normal range of resistivity of groundwater, the sample resistivities are controlled by their intrinsic matrix resistivity more than by the pore-fluids resistivity. Also, the measured resistivity of rock and soil samples having more than $20\%$ clay contents showed a good agreement with the calculated resistivity using the parallel resistance model whereas, the calculated resistivities of glass beads correlate with that obtained using Archie's formula. When the pore-fluid resistivity is high, the computation of the resistivity values of the samples using the Archie's formula could not be carried out. Through this study, we were able to confirm that the tests are only applicable to the parallel resistance model considering the intrinsic matrix resistivity within the normal resistivity range of groundwater in the subsurface.

Genesis and Classification of the Red-Yellow Podzolic soils derived from Residuum on Acidic and Intermediate Rocks -Vol. 1 (Jeonnam series) (산성암(酸性岩) 및 중성암(中性岩)의 잔적층에 발달(發達)된 적황색토(赤黃色土)의 생성(生成) 및 분류(分類) -제(第) 1 보(報) (전남통(全南統)에 관(關)하여))

  • Um, Ki Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.4 no.2
    • /
    • pp.187-192
    • /
    • 1971
  • This paper deals mainly with the genesis and classification of the Jeonnam series. These soils have brown to dark brown silt loam and silty clay loam A horizon(strong brown or reddish brown where eroded). Argillic B horizons are dominantly red or yellowish red silty clay loam to silty clay with moderately developed subangular blocky structure and with thin clay cutans on the ped faces. The C horizons are strongly and very deeply weathered strong brown, yellowish brown, pale brown and reddish yellow silty clay loam and sandy loam granitic saprolite. Content of clay increases with depth to a maximum between 100cm. Percolating water seems to be responsible for transportation and oriented deposition of clay. Chemically, soil reaction is strongly acid to medium acid throughout the profile. The content of organic matter is 1 to 2 percent, and decreases regularly with depth. Base saturation is low, based on amount of extractable cations. Characterisltically the Jeonnam series are similar to Red-Yellow Podzolic soils of the United States and are similar to Red-Yellow soils of the Japan. In the writer's opinion the Jeonnam soils are classified as Red Yellow soils. According to USDA 7th approximation, this soil can be classified as Typic Hapludults and in the FAO/UNESCO World Soil Map as Helvic Acrisols.

  • PDF

New Methods for Assessing Liquefaction Potential Based on the Characteristics of Material (재료의 역학적 거동특성에 기초한 액상화 평가방법)

  • Kim, Gyeong-Hwan;Park, In-Jun;Kim, Su-Il
    • Geotechnical Engineering
    • /
    • v.14 no.5
    • /
    • pp.205-218
    • /
    • 1998
  • The purpose of this study is to develop and utilize new assessment of liquefaction potential based on DSC(disturbed state concept) and dissipated energy concept. The term liquefaction has suddenly loses its shear strength and behaves like a fluid. Liquefaction has been a source of a major damage during severe earthquake. In this study, the cyclic undrained behavior of Joomoonjin strand is investigated by using an automates triaxial testing device(C. K. Chan type). In order to assess liquefaction potential of saturated strand, DSC method and energy method are applied for the experimental data. The use of DSC method and energy method to define the liquefaction potential is verified through laboratory testis of cyclic triaxial test on saturated sand specimens. Based on the analytical results of DSC method, the relationship between the factor affecting liquefaction characteristics(Dr) and physical properties of the saturated santa(fs and D.) is found. Based on the analytical results of energy method, it is found that the initial liquefaction of rand is related to the significant change in the dissipated energy. Finally, it is shown that the DSC method and energy method can capture the liquefaction mechanism.

  • PDF