Browse > Article

Seismic attenuation from VSP data in methane hydrate-bearing sediments  

Matsushima, Jun (도쿄대학 대학원 공학계 연구과 지구 시스템공학)
Publication Information
Geophysics and Geophysical Exploration / v.10, no.1, 2007 , pp. 29-36 More about this Journal
Abstract
Recent seismic surveys have shown that the presence of methane hydrate (MH) in sediments has significant influence on seismic attenuation. I have used vertical seismic profile (VSP) data from a Nankai Trough exploratory well, offshore Tokai in central Japan, to estimate compressional attenuation in MH-bearing sediments at seismic frequencies of 30-110 Hz. The use of two different measurement methods (spectral ratio and centroid frequency shift methods) provides an opportunity to validate the attenuation measurements. The sensitivity of attenuation analyses to different depth intervals, borehole irregularities, and different frequency ranges was also examined to validate the stability of attenuation estimation. I found no significant compressional attenuation in MH-bearing sediments at seismic frequencies. Macroscopically, the peaks of highest attenuation in the seismic frequency range correspond to low-saturation gas zones. In contrast, high compressional attenuation zones in the sonic frequency range (10-20 kHz) are associated with the presence of methane hydrates at the same well locations. Thus, this study demonstrated the frequency-dependence of attenuation in MH-bearing sediments; MH-bearing sediments cause attenuation in the sonic frequency range rather than the seismic frequency range As a possible reason why seismic frequencies in the 30-110 Hz range were not affected in MH-bearing sediments, I point out the effect of thin layering of MH-bearing zones.
Keywords
methane hydrate; attenuation; VSP; free gas; Nankai Trough;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Chand, S., and Minshull, T. A., 2004, The effect of hydrate content on seismic attenuation: A case study for Mallik 2L-38 well data, Mackenzie delta, Canada: Geophysical Research Letters 31, L14609. doi:10.1029/2004GL020292   DOI   ScienceOn
2 Gist, G. A., 1994, Seismic attenuation from 3-D heterogeneities: A possible resolution of the VSP attenuation paradox: 64th Annual International Meeting, Society of Exploration Geophysicists, 1042-1045
3 Goupillaud, P. L., 1961, An approach to inverse filtering of near surface effects from seismic records: Geophysics 26, 754-760. doi:10.1190/1.1438951   DOI
4 Johnston, D. H., Toksoz, M. N., and Timur, A., 1979, Attenuation of seismic waves in dry and saturated rocks, II: Mechanisms: Geophysics 44, 691-711. doi: 10.1190/1.1440970   DOI   ScienceOn
5 Korenaga, J., Holbrook, W. S., Singh, S. C., and Minshull, T. A., 1997, Natural gas hydrates on the Southeast U. S. margin: Constraints from fullwaveform and travel time inversion of wide-angle seismic data: Journal of Geophysical Research 102, 15345-15365. doi:10.1029/97JB00725   DOI
6 Pratt, R., Bauer, K., and Weber, M., 2003, Crosshole waveform tomography velocity and attenuation images of arctic gas hydrates: 73rd Annual International Meeting, Society of Exploration Geophysicists, Extended Abstracts, 2255-2258
7 Pujol, J., and Smithson, S., 1991, Seismic wave attenuation in volcanic rocks from VSP experiments: Geophysics 56, 1441-1455. doi:10.1190/1.1443164   DOI
8 Stainsby, D. S., and Worthington, H. W., 1985, Q estimation from vertical seismic profile data and anomalous variations in the central North Sea: Geophysics 50, 615-626. doi:10.1190/1.1441937   DOI   ScienceOn
9 Staykova, D. K., Kuhs, W. F, Salamatin, A. N., and Hansen, T., 2003, Formation of porous gas hydrates from ice powders: diffraction experiments and multistage model: Journal of Physical Chemistry B 107, 10299-10311. doi: 10.1 021/jp027787v   DOI   ScienceOn
10 Tsuji, Y., Ishida, H., Nakamizu, M., Matsumoto, R., and Shimizu, S., 2004, Overview of the MITI Nankai Trough Wells: A milestone in the evaluation of methane hydrate resources: Resource Geology 54,3-10   DOI   ScienceOn
11 Walsh, J. B., 1969, New analysis of attenuation in partially melted rock: Journal of Geophysical Research 74, 4333-4337   DOI
12 Wood, W. T., Stoffa, P. L., and Shipley, T. H., 1994, Quantitative detection of methane hydrate through high-resolution seismic velocity analysis: Journal of Geophysical Research 99, 9681-9695. doi: 10.1029/94JB00238   DOI
13 Ecker, C., Dvorkin, J., and Nur, M. A., 2000, Estimating the amount of gas hydrate and free gas from marine seismic data: Geophysics 65, 565-573. doi:10.1190/1.1444752   DOI   ScienceOn
14 Jannsen, D., Voss, J., and Theilen, E, 1985, Comparison of methods to determine Q in shallow marine sediments from vertical reflection seismograms: Geophysical Prospecting 33, 479-497. doi:10.1111/j.1365-2478.1985.tb00762.x   DOI   ScienceOn
15 Quan, Y., and Harris, M. J., 1997, Seismic attenuation tomography using the frequency shift method: Geophysics 62, 895-905. doi: 10.1190/1.1444197   DOI   ScienceOn
16 Lee, M. W., Hutchinson, D. R., Collett, T. S., and Dillon, W. P., 1996, Seismic velocities for hydrate-bearing sediments using weighted equation: Journal of Geophysical Research 101, 20347-20358. doi: 10.1029/96JB01886   DOI
17 Matsushima, J., 2006, Seismic wave attenuation in methane hydrate-bearing sediments: Vertical seismic profiling data from the Nankai Trough exploratory well, offshore Tokai, central Japan: Journal of Geophysical Research 111, B10101. doi: 10.1029/2005JB004031   DOI
18 Biot, M. A., 1956, Theory of propagation of elastic waves in a fluid saturated porous solid: The Journal of the Acoustical Society of America 28, 168-191. doi:lO.1121i1.l908239   DOI
19 Dvorkin, J., and Uden, R., 2004, Seismic wave attenuation III a methane hydrate reservoir: The Leading Edge 23, 730-734. doi:10.1190/1.1786892   DOI   ScienceOn
20 Guerin, G., and Goldberg, D., 2002, Sonic waveform attenuation in gas hydrate-bearing sediments from the Mallik 2L-38 research well, Mackenzie Delta, Canada: Journal of Geophysical Research 107(No. B5), 2088. doi:10.1029/2001JB000556   DOI
21 Karnei, R., Hato, M., and Matsuoka, T., 2004, Random heterogeneous model with bi-modal velocity distribution: Exploration Geophysics 36, 41-49
22 Inamori, T., and Hato, M., 2004, Detection of methane hydrate-bearing zones from seismic data: Resource Geology 54,99-104   DOI   ScienceOn
23 Walsh, J. B., 1966, Seismic attenuation in rock due to friction: Journal of Geophysical Research 71, 2591-2599   DOI
24 Matsushima, J., 2004, Attenuation measurements from sonic waveform logs in methane hydrate-bearing sediments at the Nankai Trough exploratory well off Tokai, central Japan: Geophysical Research Letters 32, L03306. [Correction, Geophysical Research Letters, 33, L02305, 2006.]
25 Gei, D., and Carcione, J. M., 2003, Acoustic properties of sediments saturated with gas hydrate, free gas and water: Geophysical Prospecting 51, 141-157. doi: 10.1046/j.1365-2478.2003.00359.x   DOI   ScienceOn
26 Helgerud, M., Dvorkin, J., Nur, A, Sakai, A., and Collett, T., 1999, Elastic-wave velocity in marine sediments with gas hydrates: Effective medium modelling: Geophysical Research Letters 26, 2021-2024. doi: 10. 1029/1999GL90042 I   DOI
27 Sloan, E. D., 1990, Clathrate Hydrates of Natural Gases, Marcel Dekker