Seismic attenuation from VSP data in methane hydrate-bearing sediments

메탄 하이드레이트 부존 퇴적층으로부터 획득한 수직탄성파 (VSP) 자료에서의 탄성파 진폭 감쇠

  • 송도 윤 (도쿄대학 대학원 공학계 연구과 지구 시스템공학)
  • Published : 2007.02.28

Abstract

Recent seismic surveys have shown that the presence of methane hydrate (MH) in sediments has significant influence on seismic attenuation. I have used vertical seismic profile (VSP) data from a Nankai Trough exploratory well, offshore Tokai in central Japan, to estimate compressional attenuation in MH-bearing sediments at seismic frequencies of 30-110 Hz. The use of two different measurement methods (spectral ratio and centroid frequency shift methods) provides an opportunity to validate the attenuation measurements. The sensitivity of attenuation analyses to different depth intervals, borehole irregularities, and different frequency ranges was also examined to validate the stability of attenuation estimation. I found no significant compressional attenuation in MH-bearing sediments at seismic frequencies. Macroscopically, the peaks of highest attenuation in the seismic frequency range correspond to low-saturation gas zones. In contrast, high compressional attenuation zones in the sonic frequency range (10-20 kHz) are associated with the presence of methane hydrates at the same well locations. Thus, this study demonstrated the frequency-dependence of attenuation in MH-bearing sediments; MH-bearing sediments cause attenuation in the sonic frequency range rather than the seismic frequency range As a possible reason why seismic frequencies in the 30-110 Hz range were not affected in MH-bearing sediments, I point out the effect of thin layering of MH-bearing zones.

최근의 탄성파 탐사들은 퇴적층에 메탄 하이드레이트가 존재할 경우 탄성파 진폭 감쇠에 큰 영향을 미치는 것을 보여주고 있다. 이 논문에서는 일본 중부 토카이(Tokai) 해역의 난카이 트러프 (Nankai Trough) 탐사정에서 얻은 수직탄성파자료를 이용하여 30$\sim$110 Hz 주파수 대역에서 메탄 하이드레이트 부존층에서의 P 파 감쇠를 측정하였다. 두 개의 다른 측정방법들 (스펙트럼비 (spectral ratio) 방법과 중심 주파수 이동방법 (centroid frequency shift method))을 이용하여 감쇠 측정의 유효성을 조사하였다. 또한 감쇠 측정의 안정성을 증명하기 위해 측정 심도구간, 시추공의 불규칙 변화, 주파수 구간에 따른 감쇠 분석의 민감도를 조사하였다. 탄성파 주파수 대역에서는 메탄 하이드레이트 부존층에서 P 파의 큰 진폭 감쇠는 발견되지 않았다. 육안으로 보기에는 탄성파 주파수 대역에서의 최대 감쇠는 저포화도의 가스층에 발생한다. 그와는 반대로 같은 시추공에서 얻어진 음파검층의 주파수 대역 $(10{\sim}20\;kHz)$에서는 가장 높은 P 파의 진폭 감쇠가 메탄 하이드레이트 부존층과 관련이 있었다. 그러므로 이 연구는 메탄 하이드레이트 부존 퇴적층의 진폭 감쇠가 주파수에 의존함을 보여주고 있다. 메탄 하이드레이트 부존층은 탄성파 주파수 대역보다는 음파검층 주파수 대역에서 진폭 감쇠를 유발함을 알 수 있다. $30{\sim}110\;Hz$의 탄성파 주파수 대역이 메탄 하이드레이트 부존에 영향을 받지 않는 이유 중의 하나로서 메탄 하이드레이트 지역의 얇은층 들로 이루어진 층서구조의 영향을 제시하였다.

Keywords

References

  1. Biot, M. A., 1956, Theory of propagation of elastic waves in a fluid saturated porous solid: The Journal of the Acoustical Society of America 28, 168-191. doi:lO.1121i1.l908239 https://doi.org/10.1121/1.1908239
  2. Chand, S., and Minshull, T. A., 2004, The effect of hydrate content on seismic attenuation: A case study for Mallik 2L-38 well data, Mackenzie delta, Canada: Geophysical Research Letters 31, L14609. doi:10.1029/2004GL020292
  3. Dvorkin, J., and Uden, R., 2004, Seismic wave attenuation III a methane hydrate reservoir: The Leading Edge 23, 730-734. doi:10.1190/1.1786892
  4. Ecker, C., Dvorkin, J., and Nur, M. A., 2000, Estimating the amount of gas hydrate and free gas from marine seismic data: Geophysics 65, 565-573. doi:10.1190/1.1444752
  5. Gei, D., and Carcione, J. M., 2003, Acoustic properties of sediments saturated with gas hydrate, free gas and water: Geophysical Prospecting 51, 141-157. doi: 10.1046/j.1365-2478.2003.00359.x
  6. Gist, G. A., 1994, Seismic attenuation from 3-D heterogeneities: A possible resolution of the VSP attenuation paradox: 64th Annual International Meeting, Society of Exploration Geophysicists, 1042-1045
  7. Goupillaud, P. L., 1961, An approach to inverse filtering of near surface effects from seismic records: Geophysics 26, 754-760. doi:10.1190/1.1438951
  8. Guerin, G., and Goldberg, D., 2002, Sonic waveform attenuation in gas hydrate-bearing sediments from the Mallik 2L-38 research well, Mackenzie Delta, Canada: Journal of Geophysical Research 107(No. B5), 2088. doi:10.1029/2001JB000556
  9. Helgerud, M., Dvorkin, J., Nur, A, Sakai, A., and Collett, T., 1999, Elastic-wave velocity in marine sediments with gas hydrates: Effective medium modelling: Geophysical Research Letters 26, 2021-2024. doi: 10. 1029/1999GL90042 I https://doi.org/10.1029/1999GL900421
  10. Inamori, T., and Hato, M., 2004, Detection of methane hydrate-bearing zones from seismic data: Resource Geology 54,99-104 https://doi.org/10.1111/j.1751-3928.2004.tb00191.x
  11. Jannsen, D., Voss, J., and Theilen, E, 1985, Comparison of methods to determine Q in shallow marine sediments from vertical reflection seismograms: Geophysical Prospecting 33, 479-497. doi:10.1111/j.1365-2478.1985.tb00762.x
  12. Johnston, D. H., Toksoz, M. N., and Timur, A., 1979, Attenuation of seismic waves in dry and saturated rocks, II: Mechanisms: Geophysics 44, 691-711. doi: 10.1190/1.1440970
  13. Karnei, R., Hato, M., and Matsuoka, T., 2004, Random heterogeneous model with bi-modal velocity distribution: Exploration Geophysics 36, 41-49
  14. Korenaga, J., Holbrook, W. S., Singh, S. C., and Minshull, T. A., 1997, Natural gas hydrates on the Southeast U. S. margin: Constraints from fullwaveform and travel time inversion of wide-angle seismic data: Journal of Geophysical Research 102, 15345-15365. doi:10.1029/97JB00725
  15. Lee, M. W., Hutchinson, D. R., Collett, T. S., and Dillon, W. P., 1996, Seismic velocities for hydrate-bearing sediments using weighted equation: Journal of Geophysical Research 101, 20347-20358. doi: 10.1029/96JB01886
  16. Matsushima, J., 2004, Attenuation measurements from sonic waveform logs in methane hydrate-bearing sediments at the Nankai Trough exploratory well off Tokai, central Japan: Geophysical Research Letters 32, L03306. [Correction, Geophysical Research Letters, 33, L02305, 2006.]
  17. Matsushima, J., 2006, Seismic wave attenuation in methane hydrate-bearing sediments: Vertical seismic profiling data from the Nankai Trough exploratory well, offshore Tokai, central Japan: Journal of Geophysical Research 111, B10101. doi: 10.1029/2005JB004031
  18. Pratt, R., Bauer, K., and Weber, M., 2003, Crosshole waveform tomography velocity and attenuation images of arctic gas hydrates: 73rd Annual International Meeting, Society of Exploration Geophysicists, Extended Abstracts, 2255-2258
  19. Pujol, J., and Smithson, S., 1991, Seismic wave attenuation in volcanic rocks from VSP experiments: Geophysics 56, 1441-1455. doi:10.1190/1.1443164
  20. Quan, Y., and Harris, M. J., 1997, Seismic attenuation tomography using the frequency shift method: Geophysics 62, 895-905. doi: 10.1190/1.1444197
  21. Sloan, E. D., 1990, Clathrate Hydrates of Natural Gases, Marcel Dekker
  22. Stainsby, D. S., and Worthington, H. W., 1985, Q estimation from vertical seismic profile data and anomalous variations in the central North Sea: Geophysics 50, 615-626. doi:10.1190/1.1441937
  23. Staykova, D. K., Kuhs, W. F, Salamatin, A. N., and Hansen, T., 2003, Formation of porous gas hydrates from ice powders: diffraction experiments and multistage model: Journal of Physical Chemistry B 107, 10299-10311. doi: 10.1 021/jp027787v https://doi.org/10.1021/jp027787v
  24. Tsuji, Y., Ishida, H., Nakamizu, M., Matsumoto, R., and Shimizu, S., 2004, Overview of the MITI Nankai Trough Wells: A milestone in the evaluation of methane hydrate resources: Resource Geology 54,3-10 https://doi.org/10.1111/j.1751-3928.2004.tb00182.x
  25. Walsh, J. B., 1966, Seismic attenuation in rock due to friction: Journal of Geophysical Research 71, 2591-2599 https://doi.org/10.1029/JZ071i010p02591
  26. Walsh, J. B., 1969, New analysis of attenuation in partially melted rock: Journal of Geophysical Research 74, 4333-4337 https://doi.org/10.1029/JB074i017p04333
  27. Wood, W. T., Stoffa, P. L., and Shipley, T. H., 1994, Quantitative detection of methane hydrate through high-resolution seismic velocity analysis: Journal of Geophysical Research 99, 9681-9695. doi: 10.1029/94JB00238