Browse > Article

Physical Property Factors Controlling the Electrical Resistivity of Subsurface  

Park Sam-Gyu (Geotechnical Engineering Division, KIGAM)
Publication Information
Geophysics and Geophysical Exploration / v.7, no.2, 2004 , pp. 130-135 More about this Journal
Abstract
This paper describes the physical properties of the factors controlling the electrical resistivity of the subsurface. Resistivities of various types of soil and rock samples saturated with sodium chloride solutions having nine different concentrations were measured, and the measured resistivities of these samples were compared with calculated resistivities obtained using the conventional empirical formulas. From the results obtained, we observed that the resistivity of the soil and rock samples increases with increasing in pore-fluids resistivity regardless of the media type. However, between 20 and 200 ohm-m, which is the normal range of resistivity of groundwater, the resistivity of the pore-fluids have little or no effect on the resistivities of the samples used. Below 10 ohm-m, the resistivities of the samples are mainly controlled by the pore-fluids, whereas, in the normal range of resistivity of groundwater, the sample resistivities are controlled by their intrinsic matrix resistivity more than by the pore-fluids resistivity. Also, the measured resistivity of rock and soil samples having more than $20\%$ clay contents showed a good agreement with the calculated resistivity using the parallel resistance model whereas, the calculated resistivities of glass beads correlate with that obtained using Archie's formula. When the pore-fluid resistivity is high, the computation of the resistivity values of the samples using the Archie's formula could not be carried out. Through this study, we were able to confirm that the tests are only applicable to the parallel resistance model considering the intrinsic matrix resistivity within the normal resistivity range of groundwater in the subsurface.
Keywords
electrical resistivity; physical properties; parallel resistances model;
Citations & Related Records
연도 인용수 순위
  • Reference
1 박삼규, 김희준, 1999, 일본에서의 토목.건설 지반조사를 위한 물리탐사의 활용 현황, 한국물리탐사학회, 제2회 학술발표회, 1-20
2 박삼규, 송성호, 최종학, 최보규, 이병호, 2002, 수리시설물의 누수탐지를 위한 물리탐사의 적용성, 한국물리탐사학회, 제4회 특별 심포지엄, 179-195
3 송윤호, 박삼규, 설순지, 조성준, 정승환, 2001, 물리탐사를 이용한 국내 유류오염지역의 조사 사례, 한국물리탐사학회, 제3회 특별 심포지엄, 122-140
4 정승환, 이명종, 김정호, 조성준, 송윤호, 1999, 지반조사를 위한 3차원 전기비저항탐사, 한국물리탐사학회, 제2회 학술발표회, 21-36
5 Klein, D. J., and Sill, W. R., 1982, Electrical properties of artificial clay-bearing sandstones, Geophysics, 47, 1593-1601
6 이철효, 박삼규, 2001, 매립지 오염 평가를 위한 물리탐사의 적용 사례, 한국물리탐사학회, 제3회 특별 심포지엄, 104-121
7 Archie, G. E., 1942, The electrical resistivity log as an aid in determining some reservoir characteristic, Trans, A. I. H. E. 146, 54-67
8 박삼규, 박용기 , 김을영 , 최보규, 이병호, 2003, 비위생 매립장의 침출수 유동경로 탐지를 위한 물리탐사의 적용성, 한국지하수토양환경학회, 2003년 춘계학술발표회, 180-183
9 Park, S. G., and Matsui, T., 1998, Basic study on resistivity of rocks, Butsuri-Tansa, 51, 201-209. (in Japanese)
10 김정호, 송윤호, 정승환, 2000, 전기.전자탐사 기술을 이용한 지반구조의 영상화, 2000년도 한국물리탐사학회.한국지반공학회 지반조사위원회 공동특별강연논문집, 121-154
11 Patnode, G. E., and Wyllie, M. R. J., 1950, The presence of conductive solids in reservoir rocks as a factor in electric log interpretation, Trans, A. I. M. E., 189, 47-52