물 이용 효율(water use efficiency, WUE)은 생태계의 에너지-물질-정보의 흐름과 연관된 프로세스-구조 사이의 관계에 대한 정보를 제공하는 중요한 생태학적 지표로 간주된다. 생태계 단위의 WUE 는 총일차생산량(gross primary productivity, GPP)과 증발산(evapotranspiration, ET)의 비로 정의될 수 있다. 이 연구에서는 국립수목원에 위치한 전나무(Abies holophylla) 조림지의 WUE 를 조사하기 위해 KoFlux 에서 장기간(2007-2015) 에디공분산 방법으로 관측된 이산화탄소와 수증기 플럭스를 사용하였다. 연구의 목적은 전나무 조림지의 WUE의 계절 및 경년 변동을 규명하여 탄력(resilience) 평가를 위한 총체적인 생태학적 지표의 개발에 활용하는 것이다. 분석 결과에 따르면, 전나무 조림지의 WUE는 8월에 최소값($1.8-3.3g\;C{\cdot}(kg\;H_2O)^{-1}$), 2월에 최대값($5.1-11.4g\;C\;(kg\;H_2O)^{-1}$)을 갖는 오목한 형태의 계절 변동을 보였다. 성장기(4 월-10 월)의 WUE 는 평균 $3.5{\pm}0.3g\;C{\cdot}(kg\;H_2O)^{-1}$ 이었고, 휴면기(11 월-3 월)의 WUE는 평균 $7.4{\pm}1.0g\;C{\cdot}(kg\;H_2O)^{-1}$로서 경년 변동의 폭이 컸다. 이 전나무 조림지의 WUE 는 문헌에 보고된 다른 온대 지역 침엽수림의 WUE 와 비교했을 때, 상대적으로 높은 범위에 속한다. 성장기는 4 월부터 10 월까지의 기간으로 정의하였으나, 실제 성장기의 길이(growing season length, GSL)는 매년 변화하였고, 이러한 GSL의 변화가 성장기 WUE의 경년 변동의 62%를 설명하였다. 이 연구는 생태계 단위 WUE의 장기 변동을 정량화 한 국내 첫 결과로서, 산림생태계 모형, 위성 알고리즘 및 탄력을 시험하는 데 활용할 수 있다.
목적: 일반적으로 총의치는 환자의 구내에서 제거 시 물에 담가 보관하도록 설명하는데, 수중에서의 총의치의 보관이 상온의 공기중에서 총의치를 보관하는 것과 비교해 체적 안정성에 장점이 있는지에 대한 연구는 부족하다. 본 연구는 의치의 올바른 보관 방법을 규정하는 데에 참고가 될 수 있도록, 수중에서 보관하는 경우와 공기중에 보관하는 경우에 의치상의체적 변화량과 양상을 평가하는 것을 목적으로 한다. 재료 및 방법: 초경석고로 제작한 주모형을 디지털 스캔하여, computer-aided design (CAD) 소프트웨어를 이용해 총의치 의치상을 디자인하고, 3D printing 기법을 이용하여 상악과 하악 각 6개의 시편을 제작하였다. 이를 매몰한 후 열중합 방식으로 온성하여 제작한 레진의치상을 상악과 하악 각 3개씩 그룹 A와 그룹 B로 나누었다. 그룹 A는 상온의 공기중에서 보관되었고, 그룹 B는 상온의 물에 담가 보관하며 24시간 간격으로 28일 동안 스캔하여 stereolithogrphy (SLA) 파일로 저장하였다. 이를 분석하여 한달 간의 체적변화를 측정하였고, best-fit 알고리즘을 이용하여 중첩시켜 3차원 비교 컬러맵을 이용하여 의치상 인상면의 변화 양상을 관찰하였다. 측정한 값은 Kruskal-Wallis test를 이용하여 분석하였다. 결과: 보관방법에 상관없이 총 체적에는 유의한 변화가 없었으나, 공기 중에서 보관한 의치상의 경우 상악 구개부와 하악 구치부 설측 변연에서 조직과 멀어지는 방향으로, 상악 결절부와 하악 후구치 삼각 융기 부위에서는 조직을 압박하는 방향으로 통계적으로 유의한 변화를 보였다. 결론: 수중에서의 의치 보관은 공기중에서의 의치 보관에 비해 의치상 인상면의 변화가 적게 나타났다.
경두개 직류전기자극(transcranial Direct Current Stimulation; tDCS)은 지각, 인지, 운동 등의 뇌기능 향상 및 발달 효과가 입증되며, 다양한 분야에서 활용 및 응용되는 비침습적 뇌자극술이다. tDCS 효과는 뇌의 해부학적 구조, 뇌의 노화 정도 등의 뇌신경활성화 특징에 따라 다르게 나타난다는 연구결과들이 보고되고 있다. 일주기 리듬(circadian rhythm)은 대략 하루 주기의 수면과 각성의 생리적 변화패턴을 의미하며 뇌신경활성화 상태는 일주기 리듬에 따라 다르게 나타난다. 일주기 유형(chronotype)은 하루 중에 발현되는 각성도의 크기에 따라 아침의 각성도가 큰 유형은 아침형으로 저녁의 각성도가 큰 유형은 저녁형으로 나누어진다. 본 연구는 일주기 리듬에 의해 변하는 뇌기능 특징이 tDCS 효과에 미치는 영향을 알아보고자 한다. 총 20명의 건강한 성인 대상으로 실험을 진행하였고, 참가자들은 일주기 유형을 분류하기 위해 아침형-저녁형 설문지에 의해 주간형(아침형, 중간형)과 야간형(저녁형)으로 분류했다. 본 실험은 Zoom 프로그램을 이용하여 참가자와 실험자가 온라인으로 만나서 실험을 진행했다. 실험이 확정된 참가자는 실험자로부터 뇌파 기기, 뇌파 데이터를 획득하는 앱이 있는 핸드폰, 핸드폰 거치대, 뇌자극 기기의 사용방법에 대한 설명을 듣고 기기를 테스트해보고 기기를 전달받았다. 기기사용의 어려움을 가진 2명의 참가자는 대면 실험을 진행하여, 실험자가 기기작동을 하여 실험에 참여했다. 일주기 리듬의 상태에 따른 뇌자극 효과를 알아보기 위해 1주일 간격으로 아침과 저녁에 실험했으며, tDCS 자극 전과 후의 신경활성화 반응의 차이를 뇌파를 이용하여 측정하였다. 뇌자극에 의한 뇌기능 변화를 확인하기 위해 자극 전의 뇌파와 자극 후 뇌파가 다른 패턴을 보이며 분류가 잘되는 지를 예측 정확도로 분석했으며, 뇌기능 특징 변화가 일주기 리듬과 일주기 유형에 따라 다르게 나타나는지 확인하기 위해 각 조건의 분류조건(아침/저녁, 주간형/야간형)에서 추출된 주요 EEG 특성을 비교했다. 54개의 뇌파 특성값을 추출하여 SVM(Support Vector Machine) 기계학습 알고리즘으로 분류 모델을 구축하였고, 구축된 모델을 Leave-One-Out 교차검증(Leave-One-Out Cross-Validation)을 사용하여 자극 전과 후의 뇌파 반응을 예측하는지 평가하였고, 분류예측모델의 주요 예측 인자를 확인하는 주요 특성 분석을 진행하였다. 아침과 저녁의 tDCS에 따른 뇌파 특징을 분류하는 예측 정확도는 모두 98%로 나타났으며, 주간형의 아침 자극 조건과 저녁 자극 조건의 예측 정확도는 92%와 96%이며, 야간형의 아침자극 조건과 저녁 자극 조건의 예측 정확도는 모두 94%로 나타났다. 아침 자극 전과 후의 뇌파를 분류하는 상위 3개의 주요 EEG 특성결과는 주간형과 야간형에 따라 다르게 나타났다. 주간형은 좌측 측두 두정엽과 전전두엽의 뇌파 특성값이 나타났으며, 야간형은 측두 두정엽의 뇌파 특성값들만 나타났다. 저녁 자극전과 후의 뇌파를 분류하는 상위 3개의 주요 EEG 특성 결과 또한 주간형과 야간형에 따라 다르게 나타났다. 주간형은 우측 측두 두정엽과 좌측 전두엽의 뇌파 특성값이 나타났으며, 야간형은 측두 두정엽과 전두엽의 뇌파 특성값이 나타났다. 이와 같은 연구결과는 일주기 리듬과 유형에 따라 아침과 저녁의 뇌기능 특징이 다르게 나타나서 뇌자극 효과가 다르게 나타날 수 있음을 확인한 결과이다. 본 연구의 결과는 효과적인 뇌자극을 위해 개인의 뇌신경 활성화 상태 및 특징에 따라서 뇌자극 프로토콜을 조정할 필요성을 제시한다는 데에 의의를 찾을 수 있다.
한국은 국토의 약 63%가 산림으로 구성되어 있고, 16%가 농경지로 구성되어 있어 도심에서 발생하는 NOx가 산림지역과 농경지에서 발생하는 BVOCs와 결합하여 오존을 생성할 가능성이 높다. 그래서 본 연구에서는 한국의 자연 식생 BVOCs 배출을 추정하기 위해 MODIS의 토지피복 자료와 엽면적지수 자료를 이용하여 입력자료를 생성한 후 MEGAN 모델로 BVOCs의 주요 배출 물질인 이소프렌과 모노테르펜을 대상으로 2012년 6월 한 달 간 모델링을 실시하였다. 그 결과, 해당기간 동안 이소프렌은 10,495 ton, 모노테르펜은 2,709 ton이 배출되었다. 기존 국내에서 BEIS와 CORINAR를 이용하여 연구된 이소프렌의 배출량은 약 24,000 ton, 모노테르펜은 25,000 ton으로 나타났는데, 본 연구와 배출량 차이가 나타난 주된 이유는 모델 알고리즘 차이와 모델 구동 시점에서의 일사량과 기온 등 기상 조건의 차이에 의한 것으로 추정된다. 그리고 모델링 결과와 측정 값의 비교를 위하여, 6월 11일부터 12일까지 이틀 간에 걸쳐, 한국 태화산에서 활엽수의 이소프렌과 침엽수의 모노테르펜 챔버 측정 값을 항공라이다와 방형구 식생자료를 기반으로 산정된 엽생체량 값을 이용하여 산림 단위의 BVOCs 배출량으로 환산하였다. 태화산 지역에서의 MEGAN 모델과 측정 간 BVOCs 배출량을 비교한 결과, 시간적인 배출 경향은 유사했으나 이소프렌은 MEGAN 모델에서 최대 6.4배 정도 배출량이 높게 나타났고, 모노테르펜은 최대 5.6배 정도 배출량이 높게 나타났다. MODIS에서 제공되는 토지피복 자료가 한국의 토지피복 특성을 잘 반영하지 못함에도 불구하고 MEGAN 모델링 결과가 측정 값과 다른 모델에 비해 상대적으로 큰 차이를 보이지 않은 것은 MEGAN 내에 기온, 일사량 등에 의해 식생의 BVOCs 배출량을 변환시키는 파라미터들이 현실을 비교적 적절하게 반영하고 있는 것으로 사료된다. 본 연구는 국내의 BVOCs 배출량을 MEGAN 모델을 활용하여 산정하였고, 산림지에서의 실측 자료와 비교를 통해 배출량을 평가하였다는데 의의가 있으며, 산림과 대기 간의 BVOCs 상호작용 연구에 작은 도움이 될 것으로 기대된다. 국내 BVOCs 배출량을 더 정확하게 추정하기 위해서는 지형과 식생의 특성을 더욱 최신으로 반영한 토지피복 및 엽면적지수 자료의 이용, 그리고 수목 및 농작물 등과 같이 개별 식생에 따른 배출계수 등의 대한 연구가 향후에 심도 있게 이루어져야 할 것이다.
강우-유출 해석은 하천 홍수예경보, 댐 유입량 산정 및 방류량 결정 등 수자원 관리 및 계획수립에 있어 중요한 과정이며, 밀도높은 강우관측망으로부터 수집된 강우 자료는 정확한 강우-유출 해석을 위한 가장 중요한 기초 자료로 활용된다. 본 연구 대상 지역인 메콩강 유역은 국가공유하천으로 강수 자료수집이 어렵고, 구축된 자료의 양적, 질적 품질이 국가별로 상이하여 수문해석 결과의 불확실성을 높일 우려가 있다. 최근 원격탐사 기술의 발달로 격자형 글로벌 강수자료의 획득이 용이해졌으며, 이를 활용한 미계측 유역 또는 대유역에서의 다양한 수문해석 연구들이 수행된 바 있다. 본 연구에서는 미계측 대유역 수문해석에 있어 격자형 강수자료의 적용성을 평가하기 위하여 3개의 위성 강수자료(TRMM, GSMaP, PERSIANN-CDR)와 2개의 지점 격자형 강수자료(APHRODITE, GPCC)를 수집하고, APHRODITE를 관측값으로 합성곱 신경망 모형인 ConvAE 알고리즘을 이용하여 위성 강수자료의 시·공간적 편의보정을 수행하였다. 또한, 메콩강 본류의 주요지점인 Luang Prabang, Pakse, Stung Treng, Kratie 4개 수위 관측소를 선정하여 SWAT 모형의 매개변수를 보정(2004~2011)하고 지점 격자형 강수자료 및 위성 강수자료의 보정전·후의 유출모의(2012~2013) 결과를 비교·분석하였다. 그 결과 원시위성 강수자료 및 GPCC는 APHPRODITE에 비해 정량적으로 과소 또는 과대추정되거나 공간적으로 매우 상이한 패턴을 나타낸 반면, GSMaP과 ConvAE를 이용하여 보정된 위성 강수자료의 경우, APHPRODITE에 대한 시·공간적 상관성이 개선된 것으로 분석되었다. 또한 유출모의의 경우, 모든 지점에 대해서 ConvAE로 보정된 위성 강수자료를 이용한 유출모의 결과가 원시 위성강수자료를 이용한 유출결과 보다 정확도가 향상된 것으로 분석되었다. 따라서 본 연구에서 제시하는 격자형 위성 강수자료 보정기법과 연계한 강우-유출 해석은 향후 다양한 위성 강수자료를 활용한 미계측 대유역 수문해석에서 활용이 가능할 것으로 판단된다.
본 연구에서는 CCTV 영상 기반 강우강도 산정 시 필수적으로 요구되는 적정 강우 이미지 DB를 구축하기 위한 방법론을 개발하였다. 먼저, 실환경에서 불규칙적이고 높은 변동성을 보일 수 있는 변수들(바람으로 인한 빗줄기의 변동성, 녹화 환경에서 포함되는 움직이는 객체, 렌즈 위의 흐림 현상 등)에 대한 통제가 가능한 한국건설생활환경시험연구원 내 기후환경시험실에서 CCTV 영상 DB를 구축하였다. 서로 다른 5개의 실험 조건을 고려하여 이상적 환경에서 총 1,728개의 시나리오를 구성하였다. 본 연구에서는 1,920×1,080 사이즈의 30 fps (frame per second) 영상 36개에 대하여 프레임 분할을 진행하였으며, 총 97,200개의 이미지를 사용하였다. 이후, k-최근접 이웃 알고리즘을 기반으로 산정된 최종 배경과 각 이미지와의 차이를 계산하여 빗줄기 이미지를 분리하였다. 과적합 방지를 위해 각 이미지에 대한 평균 픽셀 값을 계산하고, 설정한 픽셀 임계치보다 큰 자료를 선별하였다. 180×180 사이즈로의 재구성을 위해서 관심영역을 설정하고 10 Pixel 단위로 이동을 진행하여 픽셀 변동성이 최대가 되는 영역을 산정하였다. 합성곱 신경망 모델의 훈련을 위해서 120×120 사이즈로 재변환하고 과적합 방지를 위해 이미지 증강 과정을 거쳤다. 그 결과, 이미지 기반 강우 강도 합성곱 신경망 모델을 통해 산정된 결과값과 우량계에서 취득된 강우자료가 전반적으로 유사한 양상을 보였으며, 모든 강우강도 실험 조건에 대해서 약 92%의 데이터의 PBIAS (percent bias)가 절댓값 범위 10% 이내에 해당하였다. 본 연구의 결과물과 전이학습 등의 방법을 연계하여 기존 실환경 CCTV의 한계점을 개선할 수 있을 것으로 기대된다.
하천법 개정 및 수자원의 조사·계획 및 관리에 관한 법률 제정으로 하상변동조사를 정기적으로 실시하는 것이 의무화되었고, 지자체가 계획적으로 수자원을 관리할 수 있도록 제도가 마련되고 있다. 하상 지형은 직접 측량할 수 없기 때문에 수심 측량을 통해 간접적으로 이루어지고 있으며, 레벨측량이나 음향측심기를 활용한 접촉식 방법으로 이루어지고 있다. 접촉식 수심측량법은 자료수집이 제한적이기 때문에 공간해상도가 낮고 연속적인 측량이 불가능하다는 한계가 있어 최근에는 LiDAR나 초분광영상을 이용한 원격탐사를 이용한 수심측정 기술이 개발되고 있다. 개발된 초분광영상을 이용한 수심측정 기술은 접촉식 조사보다 넓은 지역을 조사할 수 있고, 잦은 빈도로 자료취득이 용이한 드론에 경량 초분광센서를 탑재하여 초분광영상을 취득하고, 최적 밴드비 탐색 알고리즘을 적용해 수심분포 산정이 가능하다. 기존의 초분광 원격탐사 기법은 드론의 경로비행으로 획득한 초분광영상을 면단위의 영상으로 정합한 후 특정 물리량에 대한 분석이 수행되었으며, 수심측정의 경우 모래하천을 대상으로 한 연구가 주를 이루었으며, 하상재료에 대한 평가는 이루어지지 않았었다. 본 연구에서는 기존의 초분광영상을 활용한 수심산정 기법을 식생이 있는 하천에 적용하고, 동일지역에서 식생을 제거한 후의 2가지 케이스에 대해서 시공간 초분광영상과 단면초분광영상에 모두 적용하였다. 연구결과, 식생이 없는 경우의 수심산정이 더 높은 정확도를 보였으며, 식생이 있는 경우에는 식생의 높이를 바닥으로 인식한 수심이 산정되었다. 또한, 기존의 단면초분광영상을 이용한 수심산정뿐만 아니라 시공간 초분광영상에서도 수심산정의 높은 정확도를 보여 시공간 초분광영상을 활용한 하상변동(수심변동) 추적의 가능성을 확인하였다.
현대사회는 정보통신기술 및 빅데이터 기술의 발전으로 누구나 인터넷을 통해 손쉽게 방대한 데이터를 얻고 활용할 수 있는 시대로, 양질의 데이터를 수집하는 능력을 넘어 수많은 정보 속에서 올바른 데이터만을 선별하는 능력이 더욱 중요해지고 있다. 이러한 기조는 학계에서도 이어지고 있는데, 축적되는 연구물 속에서 양질의 연구를 선별하여 올바른 지식구조를 형성하기 위해, 다양한 연구 분야에서 체계적 고찰(systematic review) 및 비체계적 고찰(non-systematic review)과 같은 문헌연구(literature review)가 수행되고 있다. 한편, 코로나19 팬데믹 이후 의료산업에서도 그동안 합의에 이르지 못했던 원격의료가 제한적으로나마 허용되고, 인공지능 및 빅데이터 기술이 응용된 건강추천시스템(health recommender systems: HRS)과 같은 새로운 의료서비스가 각광을 받고 있다. 하지만, 실무적으로 HRS가 미래 의료산업 발전을 이끌 중요한 기술로 평가받고 있음에도 불구하고, 학술적인 문헌연구는 다른 분야에 비해 매우 부족한 실정이다. 더불어 HRS는 학제적 성격이 강한 융합 분야임에도 불구하고, 기존의 문헌연구는 비체계적 고찰과 체계적 고찰 방법만을 주로 활용하여 이뤄졌기 때문에, 다른 연구 분야와의 상호작용이나 동적인 관계를 유추하기에는 한계가 존재한다. 이에, 본 연구에서는 인용네트워크 분석(citation network analysis: CNA)을 활용하여 HRS 및 주변 연구 분야의 전체적인 네트워크 구조를 파악하였다. 또한, 이 과정에서 최신 논문이 인용 관계가 잘 나타나지 않는 문제를 보완하기 위해 GraphSAGE 알고리즘을 적용함으로써, HRS 연구에 있어 'recommender system', 'wireless & IoT', 'computer vision', 'text mining' 등과 같은 연구 분야들의 중요도가 높아지고 있음을 파악하였으며, 이와 동시에 개인화(personalization) 및 개인정보보호(privacy) 등과 같은 새로운 키워드가 주요 이슈로 등장하고 있음을 확인하였다. 본 연구를 통해 HRS 연구 커뮤니티의 구조를 파악하고, 관련된 연구 동향을 살펴보며, 미래 HRS 연구 방향을 설계함에 있어 실질적인 통찰을 제공할 수 있을 것으로 기대한다.
AI 기반 음성비서 서비스 이용에 관한 연구에서는 서비스 이용 경험으로 인한 이용자의 신뢰 및 프라이버시 보호와 관련된 문제가 지속적으로 제기되고 있다. 본 연구의 목적은 AI에 대한 개인의 신뢰와 온라인 프라이버시 염려가 AI 기반 음성비서의 지속적인 사용에 미치는 영향, 특히 상호 작용의 영향을 실증적으로 분석하는 것이다. 본 연구에서는 선행연구를 바탕으로 설문문항을 구성하고 응답자 405명을 대상으로 온라인 설문조사를 실시하였다. 인공지능에 대한 사용자의 신뢰와 개인정보보호 관심이 인공지능 기반 음성비서 서비스 도입 및 지속 이용의도에 미치는 영향을 Heckman 선택모형을 이용하여 분석하였다. 연구의 주요 결과로 첫째, 인공지능 기반 음성비서 서비스 이용행태는 기술수용 촉진요인인 지각된 유용성, 지각된 이용편의성, 사회적 영향에 의해 긍정적인 영향을 받았다. 둘째, 인공지능에 대한 신뢰는 인공지능 기반 음성비서 서비스 이용행태에 통계적으로 유의한 영향을 미치지 않았으나 지속 이용의도에는 정(+)의 영향을 미쳤다. 셋째, 프라이버시 염려 수준은 AI에 대한 신뢰와의 상호작용을 통해 지속적인 이용의도를 억제하는 효과(β=-0.153)가 있음을 확인하였다. 이러한 연구 결과는 디지털 정부를 구현하기 위한 거버넌스로서 기술에 대한 신뢰를 높이고 프라이버시에 대한 사용자의 우려를 완화할 수 있는 이용자 의견수렴과 조치를 통한 이용자 경험을 강화할 필요가 있음을 시사한다. 이러한 수단으로서 인공지능 기반의 정책서비스를 도입할 때, 인공지능 기술의 적용 범위를 공론화 과정을 통해 투명하게 공개하고, 프라이버시 문제가 사후적으로 추적 및 평가될 수 있는 제도의 마련과 프라이버시의 보호를 고려한 알고리즘의 개발이 필요하다.
본 논문의 의도는 하이퍼스펙트럴 영상의 다량의 밴드를 사용하면서도 효율적인 분류기법의 개발에 초점을 두고 있다. 본 연구에서는 하이퍼스펙트럴 영상의 분류에 있어 이론적으로 밴드수가 많아질수록 분류정확도가 높을 것이라 예상되는, 다변량 통계분석기법중의 하나인 정준상관분석을 적용한 분류기법을 제안한다. 그리고 기존의 대표적인 전통적 분류기법인 최대 우도분류 방법과 비교한다. 사용되는 하이퍼스펙트럴 영상은 2001년 9월 2일 취득된 EO1-Hyperion 영상이다. 실험을 위한 밴드수는 LANDSAT TM 영상에서 열밴드를 제외한 나머지 데이터의 파장대와 일치하는 부분을 감안하여 30개 밴드로 선정하였다. 지상실제데이터로서 비교기본도를 채택하였다. 이 비교기본도와 시각적으로 윤곽을 비교하고, 중첩분석하여 정확도를 평가하였다. 최대우도분류의 경우 수역 분류를 제외하고는 전혀 분류기법으로서의 역할을 하지 못하는 것으로 판단되며, 수역의 경우도 큰 호수 외에 작은 호수나 골프장내 연못, 부분적으로 물이 존재하는 작은 영역 등은 전혀 분류하지 못하고 있는 것으로 나타났다. 그러나 정준상관분류결과는 비교기본도와 형태적으로 시각적 비교를 해볼 때 골프장잔디를 거의 명확히 분류해 내고 있으며, 도시역에 대해서도 고속도로의 선형 등을 상당히 잘 분류해내고 있음을 알 수 있다. 또한 수역의 경우도 골프장 연못이나 대학교내 연못, 기타지역의 연못, 웅덩이 등 까지도 잘 분류해내고 있음을 확인할 수 있다. 결과적으로 정준상관분석 알고리즘의 개념상 트레이닝 영역 선정시 시행착오를 겪지 않고도 정확한 분류를 할 수 있었다. 또한 분류항목 중에서 잔디와 그 외 식물을 구분해 내는 능력과 수역을 추출해 내는 능력이 최대우도분류기법에 비해 우수하였다. 이상의 결과로 판단해 볼 때 하이퍼스펙트럴영상에 적용되는 정준상관분류기법은 농작물 작황 예측과 지표수 탐사에 매우 유용하리라 판단되며, 나아가서는 분광적 고해상도 영상인 하이퍼스펙트럴 데이터를 이용한 GIS 데이터베이스 구축에 중요한 역할을 할 수 있을 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.