DOI QR코드

DOI QR Code

Seasonal and Inter-annual Variability of Water Use Efficiency of an Abies holophylla Plantation in Korea National Arboretum

국립수목원의 전나무(Abies holophylla) 조림지의 물 이용 효율의 계절 및 경년 변동

  • Thakuri, Bindu Malla (Dept. of Atmospheric Sciences, Yonsei University) ;
  • Kang, Minseok (National Center for AgroMeteorology) ;
  • Zhang, Yonghui (Interdisciplinary Program in Agricultural and Forest Meteorology, Seoul National University) ;
  • Chun, Junghwa (Division of Forest Ecology, National Institute of Forest Science) ;
  • Kim, Joon (National Center for AgroMeteorology)
  • Received : 2016.11.22
  • Accepted : 2016.12.28
  • Published : 2016.12.30

Abstract

Water use efficiency (WUE) is considered as an important ecological indicator which may provide information on the process-structure relationships associated with energy-matter-information flows in ecosystem. The WUE at ecosystem-level can be defined as the ratio of gross primary productivity (GPP) to evapotranspiration (ET). In this study, KoFlux's long-term (2007-2015) eddy covariance measurements of $CO_2$ and water vapor fluxes were used to examine the WUE of needle fir plantation in Korea National Arboretum. Our objective is to ascertain the seasonality and inter-annual variability in WUE of this needle fir plantation so that the results may be assimilated into the development of a holistic ecological indicator for resilience assessment. Our results show that the WUE of needle fir plantation is characterized by a concave seasonal pattern with a minimum ($1.8-3.3g\;C{\cdot}(kg\;H_2O)^{-1}$) in August and a maximum ($5.1-11.4g\;C{\cdot}(kg\;H_2O)^{-1}$) in February. During the growing season (April to October), WUE was on average $3.5{\pm}0.3g\;C\;(kg\;H_2O)^{-1}$. During the dormant seasons (November to March), WUE showed more variations with a mean of $7.4{\pm}1.0g\;C{\cdot}(kg\;H_2O)^{-1}$. These values are in the upper ranges of WUE reported in the literature for coniferous forests in temperate zone. Although the growing season was defined as the period from April to October, the actual length of the growing season (GSL) varied each year and its variation explained 62% of the inter-annual variability of the growing season WUE. This is the first study to quantify long-term changes in ecosystem-level WUE in Korea and the results can be used to test models, remote-sensing algorithms and resilience of forest ecosystem.

물 이용 효율(water use efficiency, WUE)은 생태계의 에너지-물질-정보의 흐름과 연관된 프로세스-구조 사이의 관계에 대한 정보를 제공하는 중요한 생태학적 지표로 간주된다. 생태계 단위의 WUE 는 총일차생산량(gross primary productivity, GPP)과 증발산(evapotranspiration, ET)의 비로 정의될 수 있다. 이 연구에서는 국립수목원에 위치한 전나무(Abies holophylla) 조림지의 WUE 를 조사하기 위해 KoFlux 에서 장기간(2007-2015) 에디공분산 방법으로 관측된 이산화탄소와 수증기 플럭스를 사용하였다. 연구의 목적은 전나무 조림지의 WUE의 계절 및 경년 변동을 규명하여 탄력(resilience) 평가를 위한 총체적인 생태학적 지표의 개발에 활용하는 것이다. 분석 결과에 따르면, 전나무 조림지의 WUE는 8월에 최소값($1.8-3.3g\;C{\cdot}(kg\;H_2O)^{-1}$), 2월에 최대값($5.1-11.4g\;C\;(kg\;H_2O)^{-1}$)을 갖는 오목한 형태의 계절 변동을 보였다. 성장기(4 월-10 월)의 WUE 는 평균 $3.5{\pm}0.3g\;C{\cdot}(kg\;H_2O)^{-1}$ 이었고, 휴면기(11 월-3 월)의 WUE는 평균 $7.4{\pm}1.0g\;C{\cdot}(kg\;H_2O)^{-1}$로서 경년 변동의 폭이 컸다. 이 전나무 조림지의 WUE 는 문헌에 보고된 다른 온대 지역 침엽수림의 WUE 와 비교했을 때, 상대적으로 높은 범위에 속한다. 성장기는 4 월부터 10 월까지의 기간으로 정의하였으나, 실제 성장기의 길이(growing season length, GSL)는 매년 변화하였고, 이러한 GSL의 변화가 성장기 WUE의 경년 변동의 62%를 설명하였다. 이 연구는 생태계 단위 WUE의 장기 변동을 정량화 한 국내 첫 결과로서, 산림생태계 모형, 위성 알고리즘 및 탄력을 시험하는 데 활용할 수 있다.

Keywords

References

  1. Anthoni, P., A. Knohl, C. Rebmann, A. Freibauer, M. Mund, W. Ziegler, O. Kolle, and E. Schulze, 2004: Forest and agricultural land-use dependent $CO_2$ exchange in Thuringia, Germany. Global Change Biology 10, 110-124.
  2. Aubinet, M., B. Chermanne, M. Vandenhaute, B. Longdoz, M. Yernaux, and E. Laitat, 2001: Long term carbon dioxide exchange above a mixed forest in the Belgian Ardennes. Agricultural and Forest Meteorology 108, 293-315. https://doi.org/10.1016/S0168-1923(01)00244-1
  3. Baldocchi, D. D., and K. B. Wilson, 2001: Modeling $CO_2$ and water vapor exchange of a temperate broad-leaved forest across hourly to decadal time scales. Ecological Modelling 142, 155-184. https://doi.org/10.1016/S0304-3800(01)00287-3
  4. Berbigier, P., J. M. Bonnefond, and P. Mellmann, 2001: $CO_2$ and water vapour fluxes for 2 years above Euroflux forest site. Agricultural and Forest Meteorology 108, 183-197. https://doi.org/10.1016/S0168-1923(01)00240-4
  5. Clark, K., H. Gholz, and M. Castro, 2004: Carbon dynamics along a chronosequence of slash pine plantations in north Florida. Ecological Applications 14, 1154-1171. https://doi.org/10.1890/02-5391
  6. Dolman, A. J., E. J. Moors, and J. A. Elbers, 2002: The carbon uptake of a mid-latitude pine forest growing on sandy soil. Agricultural and Forest Meteorology 111, 157-170. https://doi.org/10.1016/S0168-1923(02)00024-2
  7. Grelle, A., A. Lundberg, A. Lindroth, A.-S. Moren, and E. Cienciala, 1997: Evaporation components of a boreal forest: Variations during the growing season. Journal of Hydrology 19, 70-8.
  8. Grunwald, T., and C. Bernhofer, 2007: A decade of carbon, water and energy flux measurements of an old spruce forest at the Anchor Station Tharandt. Tellus 59B, 387-396.
  9. Gu, L., E. M. Falge, T. Boden, D. D. Baldocchi, T.A. Black, S. R. Saleska, T. Suni, S.Verma, T. Vesala, S. C. Wofsy, and L. Xu, 2005: Objective threshold determination for nighttime eddyflux filtering. Agricultural and Forest Meteorology 128, 179-197. https://doi.org/10.1016/j.agrformet.2004.11.006
  10. Hollinger, D. Y., J. Aber, B. Dail, E.-A. Davidson, S.-M Goltz, H. Hughes, M.-Y. Leclerc, J.-T. Lee, A. D. Richardson, C. Rodrigues, N.-A. Scott, D. Achuatavarier, and J. Walsh, 2004: Spatial and temporal variability in forest atmosphere $CO_2$ exchange. Global Change Biology 10, 1689-1706. https://doi.org/10.1111/j.1365-2486.2004.00847.x
  11. Hong, J., J. Kim, D. Lee, and J.-H. Lim, 2008: Estimation of the storage and advection effects on $H_2O$ and $CO_2$ exchanges in a hilly KoFlux forest catchment. Water Resources Research 44, W01426.
  12. Hong, J., H. Kwon, J. Lim, Y. Byun, J. Lee, and J. Kim, 2009: Standardization of KoFlux eddy covariance data processing. Korean Journal of Agricultural Forest Meteorology 11, 19-26. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2009.11.1.019
  13. Jassal, R. S., T. A. Black, D. L. Spittle house, C. Brummer, and Z. Nesic, 2009: Evapotranspiration and water use efficiency in different-aged Pacific Northwest Douglas-fir stands. Agricultural and Forest Meteorology 149, 1168-1178. https://doi.org/10.1016/j.agrformet.2009.02.004
  14. Kang, M., H. Kwon, J.-H. Cheon, and J. Kim, 2012: On estimating wet canopy evaporation from deciduous and coniferous forests in the Asian monsoon climate. Journal of Hydrometeorology 13, 950-965. https://doi.org/10.1175/JHM-D-11-07.1
  15. Kang, M., J. Kim, H.-S. Kim, B. Malla Thakuri, and J.-H Chun, 2014: On the nighttime correction of $CO_2$ flux measured by eddy covariance over temperate forests in complex terrain. Korean Journal of Agricultural and Forest Meteorology 16, 233-245. https://doi.org/10.5532/KJAFM.2014.16.3.233
  16. Kang, M., B. Malla Thakuri, J. Kim, J.-H. Chun, and C. Cho, 2016: Modification of the moving point test method for nighttime eddy flux filtering on hilly and complex terrain. B41B-0404 presented at 2016 Fall Meeting, AGU, San Francisco, California, 12-16 Dec.
  17. KFRI, 2003: 90 Years History of Gwangneung Experimental Forest 1913-2003, Korea Forest Research Institute.
  18. KFS, 2009: Statistical Yearbook of Forestry, Korea Forest Service.
  19. Kim, J., D. Lee, J. Hong, S. Kang, S.-J. Kim, S.-K. Moon, J.-H. Lim, Y. Son, J. Lee, S. Kim, N. Woo, K. Kim, B. Lee, B.-L. Lee, and S. Kim, 2006: HydroKorea and CarboKorea: cross-scale studies of ecohydrology and biogeochemistry in a heterogeneous and complex forest catchment of Korea. Ecological Research 21(6), 881-889. https://doi.org/10.1007/s11284-006-0055-3
  20. Krishnan, P., T. A. Black, A. G. Barr, N. J. Grant, D. Gaumont-Guay, and Z. Nesic, 2008: Factors controlling the interannual variability in the carbon balance of a southern boreal black spruce forest. Journal of Geophysical Research 111, D09109. doi:10.1029/2007JD008965
  21. Kuglitsch, F. G., M. Reichstein, C. Beer, A. Carrara, R. Ceulemans, A. Granier, I. A. Janssens, B. Koestner, A. Lindroth, D. Loustau, G. Matteucci, L. Montagnani, E. J. Moors, D. Papale, K. Pilegaard, S. Rambal, C. Rebmann, E. D. Schulze, G. Seufert, H. Verbeeck, T. Vesala, M. Aubinet, C. Bernhofer, T. Foken, T. Grunwald, B. Heinesch, W. Kutsch, T. Laurila, B. Longdoz, F. Miglietta, M. J. Sanz, and R. Valentini, 2008: Characterization of ecosystem water-use efficiency of European forests from eddy covariance measurements. Biogeosciences Discussion 5, 4481-4519. https://doi.org/10.5194/bgd-5-4481-2008
  22. Kwon, H., J. Kim, and J. Hong, 2010: Influence of the Asian monsoon on net ecosystem carbon exchange in two major plant functional types in Korea. Biogeosciences 7, 1493-1504. https://doi.org/10.5194/bg-7-1493-2010
  23. Lee, D., J. Kim, S.-J. Kim, S. K. Moon, J. Lee, J.-H. Lim, Y. Son, S. Kang, S. Kim, K, Kim, N. Woo, B. Lee, and S. Kim, 2007: Lessons from cross-scale studies of water and carbon cycles in the Gwangneung forest catchment in a complex landscape of monsoon Korea. Korean Journal of Agricultural Forest Meteorology 9, 149-160. https://doi.org/10.5532/KJAFM.2007.9.2.149
  24. Lloyd, J., and J. Taylor, 1994: On the temperature dependence of soil respiration. Functional Ecology 8, 315-323. https://doi.org/10.2307/2389824
  25. Papale, D., M. Reichstein, M. Aubinet, E. Canfora1, C. Bernhofer, W. Kutsch, B. Longdoz, S. Rambal, R. Valentini1, T. Vesala, and D. Yakir, 2006: Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation. Biogeoscience 3, 571-583. https://doi.org/10.5194/bg-3-571-2006
  26. Ponton, S., L.-B. Flanagan, K.-P. Alstad, B.-G. Johnson, K. Morgenstern, N. Klyun, T.-A. Black, and A. Barr, 2006: Comparison of ecosystem water-use efficiency among douglas-fir forest, aspen forest and grassland using eddy covariance and carbon isotope techniques. Global Change Biology 12, 294-310. https://doi.org/10.1111/j.1365-2486.2005.01103.x
  27. Reichstein, M., E. Falge, D. Baldocchi, D. Papale, M. Aubinet, P. Berbigier, C. Bernhofer, N. Buchmann, T. Gilmanov, A. Granier, T. Grunwald, K. Havrankova, H. Ilvesniemi, D. Janous, A. Knohl, T. Laurila, A. Lohila, D. Loustau, G. Matteucci, T. Meyers, F. Miglietta, J. M. Ourcival, J. Pumpanen, S. Rambal, E. Rotenberg, M. Sanz, J. Tenhunen, G. Seufert, F. Vaccari, T. Vesala, D. Yakir, and R. Valentini, 2005: On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology 11, 1424-1439. https://doi.org/10.1111/j.1365-2486.2005.001002.x
  28. Sanz, M. J., A. Carrara, G. Gimeno, A. Bucher, and R. Lopez, 2004: Effects of a dry and warm summer conditions on $CO_2$ and energy fluxes from three Mediterranean ecosystems, Geophysical Research Abstracts 6, 3239.
  29. Vickers, D., C.-K. Thomas, C. Pettijohn, J.-G. Martin, and B.-E. Law, 2012: Five years of carbon fluxes and inherent water-use efficiency at two semi-arid pine forests with different disturbance histories. Tellus B: DOI:10.3402/tellusb.v64i0.17159.
  30. Webb, E. K., G. I. Pearman, and R. Leuning, 1980: Correction of flux measurements for density effects due to heat and water vapor transfer. Quarterly Journal of the Royal Meteorological Society, 106, 85-100. https://doi.org/10.1002/qj.49710644707
  31. Wilczak, J. M., S. P. Oncley, and S. Stage, 2001: Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorology 99, 127-150. https://doi.org/10.1023/A:1018966204465
  32. Xiao, J.-F., G. Sun, J. Chen, H. Chen, S. Chen, G. Dong, S. Gao, H. Guo, J. Guo, S. Han, T. Kato, Y. Li, G. Lin, W. Lu, M. Ma, S. McNulty, C. Shao, X. Wang, X. Xie, X. Zhang, Z. Zhang, B. Zhao, G. Zhou, and J. Zhou, 2013: Carbon fluxes, evapotranspiration, and water use efficiency of terrestrial ecosystems in China. Agricultural and Forest Meteorology 182-183, 76-90. https://doi.org/10.1016/j.agrformet.2013.08.007
  33. Yoo, J., D. Lee, J. Hong, and J. Kim, 2009: Principles and applications of multi-level $H_2O/CO_2$ profile measurement system. Korean Journal of Agricultural and Forest Meteorology 11, 27-38. https://doi.org/10.5532/KJAFM.2009.11.1.027
  34. Yu, G., Q. Wang, and J. Zhuang, 2004: Modeling the water use efficiency of soybean and maize plants under environmental stresses: application of a synthetic model of photosynthesis-transpiration based on stomatal behavior. Journal of Plant Physiology 161, 308-318.
  35. Yu, G., X. Song, Q. Wang, Y. Liu, D. Guan, J Yan, X Sun, L. Zhang, and X. Wen, 2008: Water-use efficiency of forest ecosystems in eastern China and its relations to climatic variables. New Phytologist 177, 927-937. https://doi.org/10.1111/j.1469-8137.2007.02316.x
  36. Yuan, R., M. Kang, S. Park, J. Hong, D. Lee, and J. Kim, 2007: The effect of coordinate rotation on the eddy covariance flux estimation in a hilly KoFlux forest catchment. Korean Journal of Agricultural and Forest Meteorology 9, 100-108. https://doi.org/10.5532/KJAFM.2007.9.2.100
  37. Zhou, J., Z. Zhang, G. Sun, X. Fang, T. Zha, J. Chen, A. Noormets, J. Guo, and S. McNulty, 2014: Water-use efficiency of a poplar plantation in Northern China. Journal for Forest Research 19, 483-492. https://doi.org/10.1007/s10310-014-0436-3
  38. Zhu, X., G. Yu, Q. Wang, Z. Hu, S. Han, J. Yan, Y. Wang, and L. Zhao, 2014: Seasonal dynamics of water use efficiency of typical forest and grassland ecosystems in China. Journal for Forest Research 19, 70-76. https://doi.org/10.1007/s10310-013-0390-5