DOI QR코드

DOI QR Code

The impact of functional brain change by transcranial direct current stimulation effects concerning circadian rhythm and chronotype

일주기 리듬과 일주기 유형이 경두개 직류전기자극에 의한 뇌기능 변화에 미치는 영향 탐색

  • Jung, Dawoon (Graduate Program in Cognitive Science, Yonsei University) ;
  • Yoo, Soomin (Department of Psychology, Yonsei University) ;
  • Lee, Hyunsoo (Department of Psychology, Yonsei University) ;
  • Han, Sanghoon (Graduate Program in Cognitive Science, Yonsei University)
  • 정다운 (연세대학교 인지과학협동과정) ;
  • 유수민 (연세대학교 심리학과) ;
  • 이현수 (연세대학교 심리학과) ;
  • 한상훈 (연세대학교 인지과학협동과정)
  • Received : 2022.03.14
  • Accepted : 2022.03.14
  • Published : 2022.03.31

Abstract

Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation that is able to alter neuronal activity in particular brain regions. Many studies have researched how tDCS modulates neuronal activity and reorganizes neural networks. However it is difficult to conclude the effect of brain stimulation because the studies are heterogeneous with respect to the stimulation parameter as well as individual difference. It is not fully in agreement with the effects of brain stimulation. In particular few studies have researched the reason of variability of brain stimulation in response to time so far. The study investigated individual variability of brain stimulation based on circadian rhythm and chronotype. Participants were divided into two groups which are morning type and evening type. The experiment was conducted by Zoom meeting which is video meeting programs. Participants were sent experiment tool which are Muse(EEG device), tdcs device, cell phone and cell phone holder after manuals for experimental equipment were explained. Participants were required to make a phone in frount of a camera so that experimenter can monitor online EEG data. Two participants who was difficult to use experimental devices experimented in a laboratory setting where experimenter set up devices. For all participants the accuracy of 98% was achieved by SVM using leave one out cross validation in classification in the the effects of morning stimulation and the evening stimulation. For morning type, the accuracy of 92% and 96% was achieved in classification in the morning stimulation and the evening stimulation. For evening type, it was 94% accuracy in classification for the effect of brain stimulation in the morning and the evening. Feature importance was different both in classification in the morning stimulation and the evening stimulation for morning type and evening type. Results indicated that the effect of brain stimulation can be explained with brain state and trait. Our study results noted that the tDCS protocol for target state is manipulated by individual differences as well as target state.

경두개 직류전기자극(transcranial Direct Current Stimulation; tDCS)은 지각, 인지, 운동 등의 뇌기능 향상 및 발달 효과가 입증되며, 다양한 분야에서 활용 및 응용되는 비침습적 뇌자극술이다. tDCS 효과는 뇌의 해부학적 구조, 뇌의 노화 정도 등의 뇌신경활성화 특징에 따라 다르게 나타난다는 연구결과들이 보고되고 있다. 일주기 리듬(circadian rhythm)은 대략 하루 주기의 수면과 각성의 생리적 변화패턴을 의미하며 뇌신경활성화 상태는 일주기 리듬에 따라 다르게 나타난다. 일주기 유형(chronotype)은 하루 중에 발현되는 각성도의 크기에 따라 아침의 각성도가 큰 유형은 아침형으로 저녁의 각성도가 큰 유형은 저녁형으로 나누어진다. 본 연구는 일주기 리듬에 의해 변하는 뇌기능 특징이 tDCS 효과에 미치는 영향을 알아보고자 한다. 총 20명의 건강한 성인 대상으로 실험을 진행하였고, 참가자들은 일주기 유형을 분류하기 위해 아침형-저녁형 설문지에 의해 주간형(아침형, 중간형)과 야간형(저녁형)으로 분류했다. 본 실험은 Zoom 프로그램을 이용하여 참가자와 실험자가 온라인으로 만나서 실험을 진행했다. 실험이 확정된 참가자는 실험자로부터 뇌파 기기, 뇌파 데이터를 획득하는 앱이 있는 핸드폰, 핸드폰 거치대, 뇌자극 기기의 사용방법에 대한 설명을 듣고 기기를 테스트해보고 기기를 전달받았다. 기기사용의 어려움을 가진 2명의 참가자는 대면 실험을 진행하여, 실험자가 기기작동을 하여 실험에 참여했다. 일주기 리듬의 상태에 따른 뇌자극 효과를 알아보기 위해 1주일 간격으로 아침과 저녁에 실험했으며, tDCS 자극 전과 후의 신경활성화 반응의 차이를 뇌파를 이용하여 측정하였다. 뇌자극에 의한 뇌기능 변화를 확인하기 위해 자극 전의 뇌파와 자극 후 뇌파가 다른 패턴을 보이며 분류가 잘되는 지를 예측 정확도로 분석했으며, 뇌기능 특징 변화가 일주기 리듬과 일주기 유형에 따라 다르게 나타나는지 확인하기 위해 각 조건의 분류조건(아침/저녁, 주간형/야간형)에서 추출된 주요 EEG 특성을 비교했다. 54개의 뇌파 특성값을 추출하여 SVM(Support Vector Machine) 기계학습 알고리즘으로 분류 모델을 구축하였고, 구축된 모델을 Leave-One-Out 교차검증(Leave-One-Out Cross-Validation)을 사용하여 자극 전과 후의 뇌파 반응을 예측하는지 평가하였고, 분류예측모델의 주요 예측 인자를 확인하는 주요 특성 분석을 진행하였다. 아침과 저녁의 tDCS에 따른 뇌파 특징을 분류하는 예측 정확도는 모두 98%로 나타났으며, 주간형의 아침 자극 조건과 저녁 자극 조건의 예측 정확도는 92%와 96%이며, 야간형의 아침자극 조건과 저녁 자극 조건의 예측 정확도는 모두 94%로 나타났다. 아침 자극 전과 후의 뇌파를 분류하는 상위 3개의 주요 EEG 특성결과는 주간형과 야간형에 따라 다르게 나타났다. 주간형은 좌측 측두 두정엽과 전전두엽의 뇌파 특성값이 나타났으며, 야간형은 측두 두정엽의 뇌파 특성값들만 나타났다. 저녁 자극전과 후의 뇌파를 분류하는 상위 3개의 주요 EEG 특성 결과 또한 주간형과 야간형에 따라 다르게 나타났다. 주간형은 우측 측두 두정엽과 좌측 전두엽의 뇌파 특성값이 나타났으며, 야간형은 측두 두정엽과 전두엽의 뇌파 특성값이 나타났다. 이와 같은 연구결과는 일주기 리듬과 유형에 따라 아침과 저녁의 뇌기능 특징이 다르게 나타나서 뇌자극 효과가 다르게 나타날 수 있음을 확인한 결과이다. 본 연구의 결과는 효과적인 뇌자극을 위해 개인의 뇌신경 활성화 상태 및 특징에 따라서 뇌자극 프로토콜을 조정할 필요성을 제시한다는 데에 의의를 찾을 수 있다.

Keywords

Acknowledgement

본 연구는 중소벤처기업부의 기술개발사업[S2766617]과 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원(NRF-2019R1A2C1007399)에 의한 연구임.

References

  1. Archer, S. N., Robilliard, D. L., Skene, D. J., Smits, M., Williams, A., Arendt, J., & von Schantz, M. (2003). A length polymorphism in the circadian clock gene Per3 is linked to delayed sleep phase syndrome and extreme diurnal preference. Sleep, 26(4), 413-415. https://doi.org/10.1093/sleep/26.4.413
  2. Arsalan, A., Majid, M., Butt, A. R., & Anwar, S. M. (2019). Classification of Perceived Mental Stress Using A Commercially Available EEG Headband. IEEE Journal of Biomedical and Health Informatics, 23(6), 2257–2264. https://doi.org/10.1109/JBHI.2019.2926407
  3. Bashivan, P., Rish, I., & Heisig, S. (2016). Mental State Recognition via Wearable EEG. ArXiv:1602.00985 [Cs]. http://arxiv.org/abs/1602.00985
  4. Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324
  5. Boonstra, T. W., Nikolin, S., Meisener, A.-C., Martin, D. M., & Loo, C. K. (2016). Change in Mean Frequency of Resting-State Electroencephalography after Transcranial Direct Current Stimulation. Frontiers in Human Neuroscience, 10, 270. https://doi.org/10.3389/fnhum.2016.00270
  6. Briere, M.-E., Forest, G., Chouinard, S., & Godbout, R. (2003). Evening and morning EEG differences between young men and women adults. Brain and Cognition, 53(2), 145–148. https://doi.org/10.1016/S0278-2626(03)00097-6
  7. Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel, O., Niculae, V., Prettenhofer, P., Gramfort, A., Grobler, J., Layton, R., Vanderplas, J., Joly, A., Holt, B., & Varoquaux, G. (2013). API design for machine learning software: Experiences from the scikit-learn project. ArXiv:1309.0238 [Cs]. http://arxiv.org/abs/1309.0238
  8. Carpen JD, Archer SN, Skene DJ, Smits M, von Schantz M. A single-nucleotide polymorphism in the 5'-untranslated region of the hPER2 gene is associated with diurnal preference. J Sleep Res 2005;14:293-297 https://doi.org/10.1111/j.1365-2869.2005.00471.x
  9. Carpen JD, von Schantz M, Smits M, Skene DJ, Archer SN. A silent polymorphism in the PER1 gene associates with extreme diurnal preference in humans. J Hum Genet 2006;51:1122-1125 https://doi.org/10.1007/s10038-006-0060-y
  10. Chew, T., Ho, K.-A., & Loo, C. K. (2015). Inter- and Intra-individual Variability in Response to Transcranial Direct Current Stimulation (tDCS) at Varying Current Intensities. Brain Stimulation, 8(6), 1130–1137. https://doi.org/10.1016/j.brs.2015.07.031
  11. Chung, S., Son, G. H., & Kim, K. (2011). Circadian rhythm of adrenal glucocorticoid: Its regulation and clinical implications. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1812(5), 581-591. https://doi.org/10.1016/j.bbadis.2011.02.003
  12. Coffman, B. A., Clark, V. P., & Parasuraman, R. (2014). Battery powered thought: Enhancement of attention, learning, and memory in healthy adults using transcranial direct current stimulation. NeuroImage, 85 Pt 3, 895–908. https://doi.org/10.1016/j.neuroimage.2013.07.083
  13. Correa, A., Alguacil, S., Ciria, L. F., Jimenez, A., & Ruz, M. (2020). Circadian rhythms and decision-making: a review and new evidence from electroencephalography. Chronobiology international, 37(4), 520-541. https://doi.org/10.1080/07420528.2020.1715421
  14. Cruse, D., Monti, M. M., & Owen, A. M. (2011). Neuroimaging in disorders of consciousness: Contributions to diagnosis and prognosis. Future Neurology, 6(2), 291-299. https://doi.org/10.2217/fnl.10.87
  15. Dedoncker, J., Brunoni, A. R., Baeken, C., & Vanderhasselt, M.-A. (2016). A Systematic Review and Meta-Analysis of the Effects of Transcranial Direct Current Stimulation (tDCS) Over the Dorsolateral Prefrontal Cortex in Healthy and Neuropsychiatric Samples: Influence of Stimulation Parameters. Brain Stimulation, 9(4), 501–517. https://doi.org/10.1016/j.brs.2016.04.006
  16. Edla, D. R., Mangalorekar, K., Dhavalikar, G., & Dodia, S. (2018). Classification of EEG data for human mental state analysis using Random Forest Classifier. Procedia Computer Science, 132, 1523–1532. https://doi.org/10.1016/j.procs.2018.05.116
  17. Gladwin, T. E., den Uyl, T. E., Fregni, F. F., & Wiers, R. W. (2012). Enhancement of selective attention by tDCS: Interaction with interference in a Sternberg task. Neuroscience Letters, 512(1), 33-37. https://doi.org/10.1016/j.neulet.2012.01.056
  18. Gupta, S. (1991). Effects of time of day and personality on intelligence test scores. Personality and Individual Differences, 12(11), 1227-1231. https://doi.org/10.1016/0191-8869(91)90089-T
  19. Guerra, A., Lopez-Alonso, V., Cheeran, B., & Suppa, A. (2020). Variability in non-invasive brain stimulation studies: Reasons and results. Neuroscience Letters, 719, 133330. https://doi.org/10.1016/j.neulet.2017.12.058
  20. Hordacre, B., Goldsworthy, M. R., Vallence, A. M., Darvishi, S., Moezzi, B., Hamada, M., Rothwell, J. C., & Ridding, M. C. (2017). Variability in neural excitability and plasticity induction in the human cortex: A brain stimulation study. Brain Stimulation, 10(3), 588–595. https://doi.org/10.1016/j.brs.2016.12.001
  21. Horne, J. A., & Ostberg, O. (1976). A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. International Journal of Chronobiology, 4, 97–110.
  22. James Clutterbuck. Mind monitor application. https://mind-monitor.com.
  23. JASPER, H. H. (1958). The ten-twenty electrode system of the international federation. Electroencephalogr. Clin. Neurophysiol., 10, 370-375. https://doi.org/10.1016/0013-4694(58)90053-1
  24. Katz, M. J. (1988). Fractals and the analysis of waveforms. Computers in biology and medicine, 18(3), 145-156. https://doi.org/10.1016/0010-4825(88)90041-8
  25. Katzenberg, D., Young, T., Finn, L., Lin, L., King, D. P., Takahashi, J. S., & Mignot, E. (1998). A CLOCK Polymorphism Associated with Human Diurnal Preference. Sleep, 21(6), 569-576. https://doi.org/10.1093/sleep/21.6.569
  26. Katsoulaki, M., Kastrinis, A., & Tsekoura, M. (2017). The Effects of Anodal Transcranial Direct Current Stimulation on Working Memory. Advances in Experimental Medicine and Biology, 987, 283–289. https://doi.org/10.1007/978-3-319-57379-3_25
  27. Kerkhof, G. A., Korving, H. J., Willemse-vd Geest, H. M., & Rietveld, W. J. (1980). Diurnal differences between morning-type and evening-type subjects in self-rated alertness, body temperature and the visual and auditory evoked potential. Neuroscience Letters, 16(1), 11–15. https://doi.org/10.1016/0304-3940(80)90093-2
  28. Khademi, F., Royter, V., & Gharabaghi, A. (2019). State-dependent brain stimulation: Power or phase? Brain Stimulation, 12(2), 296–299. https://doi.org/10.1016/j.brs.2018.10.015
  29. Kim, J.-H., Kim, D.-W., Chang, W.-H., Kim, Y.-H., & Im, C.-H. (2013). Inconsistent outcomes of transcranial direct current stimulation (tDCS) may be originated from the anatomical differences among individuals: A simulation study using individual MRI data. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference, 2013, 823–825. https://doi.org/10.1109/EMBC.2013.6609627
  30. Kim, S. (2020). Impact of Dual-Hemisphere Transcranial Direct Current Stimulation Combined with Modified Constraint-Induced Movement Therapy on Upper Limb Function in Chronic Stroke: A Single Blinded Randomized Controlled Trial. Journal of The Korean Society of Integrative Medicine, 8(2), 11-20. https://doi.org/10.15268/ksim.2020.8.2.011
  31. Kim, S.-H. (2020). The Convergence Effect of Task-Oriented Training and Vibration Stimulation, Transcranial Direct Current Stimulation to Improve Upper Limb Function in Stroke. Journal of the Korea Convergence Society, 11(9), 31-37. https://doi.org/10.15207/JKCS.2020.11.9.031
  32. Lamia, K. A., Storch, K.-F., & Weitz, C. J. (2008). Physiological significance of a peripheral tissue circadian clock. Proceedings of the National Academy of Sciences, 105(39), 15172-15177. https://doi.org/10.1073/pnas.0806717105
  33. Lara, T., Madrid, J. A., & Correa, A. (2014). The Vigilance Decrement in Executive Function Is Attenuated When Individual Chronotypes Perform at Their Optimal Time of Day. PLoS ONE, 9(2), e88820. https://doi.org/10.1371/journal.pone.0088820
  34. Lee, E. (2021). The Effect of Transcranial Direct Current Stimulation on Smartphone Addiction and Stress: A randomized controlled study. Physical Therapy Rehabilitation Science, 10(1), 76-81. https://doi.org/10.14474/ptrs.2021.10.1.760.9%
  35. Lopez-Alonso, V., Cheeran, B., Rio-Rodriguez, D., & Fernandez-Del-Olmo, M. (2014). Inter-individual variability in response to non-invasive brain stimulation paradigms. Brain Stimulation, 7(3), 372–380. https://doi.org/10.1016/j.brs.2014.02.004
  36. Ly, V., Bergmann, T. O., Gladwin, T. E., Volman, I., Usberti, N., Cools, R., & Roelofs, K. (2016). Reduced Affective Biasing of Instrumental Action With tDCS Over the Prefrontal Cortex. Brain Stimulation, 9(3), 380-387. https://doi.org/10.1016/j.brs.2016.02.002
  37. Mallardi, V. (1978). Biorhythm and Your Behavior. Philadelphia. Running Press. 9-15.
  38. Morris, C. J., Aeschbach, D., & Scheer, F. A. J. L. (2012). Circadian system, sleep and endocrinology. Molecular and Cellular Endocrinology, 349(1), 91-104. https://doi.org/10.1016/j.mce.2011.09.003
  39. Muller, K.-R., Tangermann, M., Dornhege, G., Krauledat, M., Curio, G., & Blankertz, B. (2008). Machine learning for real-time single-trial EEG-analysis: From brain–computer interfacing to mental state monitoring. Journal of Neuroscience Methods, 167(1), 82–90. https://doi.org/10.1016/j.jneumeth.2007.09.022
  40. Muller-dahlhaus, J. F., M, Orekhov, Y., Liu, Y., & Ziemann, U. (2008). Interindividual variability and age-dependency of motor cortical plasticity induced by paired associative stimulation. Experimental Brain Research, 187(3), 467-475. http://dx.doi.org/10.1007/s00221-008-1319-7
  41. Natale, V., & Cicogna, P. (1996). Circadian regulation of subjective alertness in morning and evening 'types.' Personality and Individual Differences, 20(4), 491–497. https://doi.org/10.1016/0191-8869(95)00213-8
  42. Nitsche, M. A., & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. The Journal of Physiology, 527 Pt 3, 633–639. https://doi.org/10.1111/j.1469-7793.2000.t01-1-00633.x
  43. Nitsche, M. A., Fricke, K., Henschke, U., Schlitterlau, A., Liebetanz, D., Lang, N., Henning, S., Tergau, F., & Paulus, W. (2003). Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. The Journal of Physiology, 553(Pt 1), 293–301. https://doi.org/10.1113/jphysiol.2003.049916
  44. Nitsche, M. A., Liebetanz, D., Schlitterlau, A., Henschke, U., Fricke, K., Frommann, K., Lang, N., Henning, S., Paulus, W., & Tergau, F. (2004). GABAergic modulation of DC stimulation-induced motor cortex excitability shifts in humans. The European Journal of Neuroscience, 19(10), 2720–2726. https://doi.org/10.1111/j.0953-816X.2004.03398.x
  45. Nitsche, M. A., Cohen, L. G., Wassermann, E. M., Priori, A., Lang, N., Antal, A., Paulus, W., Hummel, F., Boggio, P. S., Fregni, F., & Pascual-Leone, A. (2008). Transcranial direct current stimulation: State of the art 2008. Brain Stimulation, 1(3), 206-223. https://doi.org/10.1016/j.brs.2008.06.004
  46. Nitsche, M. A., Boggio, P. S., Fregni, F., & Pascual-Leone, A. (2009). Treatment of depression with transcranial direct current stimulation (tDCS): A Review. Experimental Neurology, 219(1), 14-19. https://doi.org/10.1016/j.expneurol.2009.03.038
  47. Paulus, W. (2003). Transcranial direct current stimulation (tDCS). Supplements to Clinical Neurophysiology, 56, 249–254. https://doi.org/10.1016/s1567-424x(09)70229-6
  48. Peter, J., Neumann-Dunayevska, E., Geugelin, F., Ninosu, N., Plewnia, C., & Kloppel, S. (2019). Reducing negative affect with anodal transcranial direct current stimulation increases memory performance in young—But not in elderly—Individuals. Brain Structure and Function, 224(8), 2973–2982. https://doi.org/10.1007/s00429-019-01946-1
  49. Ratti, E., Waninger, S., Berka, C., Ruffini, G., & Verma, A. (2017). Comparison of Medical and Consumer Wireless EEG Systems for Use in Clinical Trials. Frontiers in Human Neuroscience, 11, 398. https://doi.org/10.3389/fnhum.2017.00398
  50. Raichle, M. E. (2010). Two views of brain function. Trends in cognitive sciences, 14(4), 180-190. https://doi.org/10.1016/j.tics.2010.01.008
  51. Rudic, R. D., McNamara, P., Curtis, A.-M., Boston, R. C., Panda, S., Hogenesch, J. B., & FitzGerald, G. A. (2004). BMAL1 and CLOCK, Two Essential Components of the Circadian Clock, Are Involved in Glucose Homeostasis. PLOS Biology, 2(11), e377. https://doi.org/10.1371/journal.pbio.0020377
  52. Ruffini, G., Wendling, F., Merlet, I., Molaee-Ardekani, B., Mekonnen, A., Salvador, R., Soria-Frisch, A., Grau, C., Dunne, S., & Miranda, P. C. (2013). Transcranial current brain stimulation (tCS): Models and technologies. IEEE Transactions on Neural Systems and Rehabilitation Engineering: A Publication of the IEEE Engineering in Medicine and Biology Society, 21(3), 333-345. https://doi.org/10.1109/TNSRE.2012.2200046
  53. Schmidt, C., Collette, F., Cajochen, C., & Peigneux, P. (2007). A time to think: Circadian rhythms in human cognition. Cognitive Neuropsychology, 24(7), 755-789. https://doi.org/10.1080/02643290701754158
  54. Tseng, P., Hsu, T.-Y., Chang, C.-F., Tzeng, O. J. L., Hung, D. L., Muggleton, N. G., Walsh, V., Liang, W.-K., Cheng, S., & Juan, C.-H. (2012). Unleashing potential: Transcranial direct current stimulation over the right posterior parietal cortex improves change detection in low-performing individuals. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 32(31), 10554–10561. https://doi.org/10.1523/JNEUROSCI.0362-12.2012
  55. Urban, R., Magyarodi, T., & Rigo, A. (2011). Morningness-eveningness, chronotypes and health-impairing behaviors in adolescents. Chronobiology international, 28(3), 238-247. https://doi.org/10.3109/07420528.2010.549599
  56. Van Hulle, C. A., Shirtcliff, E. A., Lemery-Chalfant, K., & Goldsmith, H. H. (2012). Genetic and environmental influences on individual differences in cortisol level and circadian rhythm in middle childhood. Hormones and Behavior, 62(1), 36-42. https://doi.org/10.1016/j.yhbeh.2012.04.014
  57. Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and validation of brief measures of positive and negative affect: The PANAS scales. Journal of Personality and Social Psychology, 54(6), 1063–1070. https://doi.org/10.1037/0022-3514.54.6.1063
  58. Wong, L. Y. X., Gray, S. J., & Gallo, D. A. (2018). Does tDCS over prefrontal cortex improve episodic memory retrieval? Potential importance of time of day. Cognitive Neuroscience, 9(3-4), 167-180. https://doi.org/10.1080/17588928.2018.1504014
  59. Zhou, Q., Yu, C., Yu, H., Zhang, Y., Liu, Z., Hu, Z., Yuan, T.-F., & Zhou, D. (2020). The effects of repeated transcranial direct current stimulation on sleep quality and depression symptoms in patients with major depression and insomnia. Sleep Medicine, 70, 17-26. https://doi.org/10.1016/j.sleep.2020.02.003
  60. Zoom Video Communications. Zoom Meetings. Zoom security guide. https://zoom.us/docs/doc/Zoom-Security-White-Paper.pdf
  61. 김성재 (2012). 20-39세 성인에서 한국판 아침형-저녁형 설문(MEQ-K)의 표준화 연구. ScienceON; 강원대학교 대학원. http://scienceon.kisti.re.kr/srch/selectPORSrchArticle.do?cn=DIKO0012903823
  62. 김정기 & 송혜수 (2007). 수면 일주기 리듬의 개인차에 따른 수면습관, 심리적 적응 및 학업수행의 차이: 대학생을 중심으로. 한국심리학회지: 건강, 12(3), 631-648.
  63. 박순주, 김수인, 남가현, 성제희, 이주원, & 조은희 (2014). 일주기 리듬에 따른 대학생의 학습몰입과 피로. 한국콘텐츠학회논문지, 14(8), 319-328. https://doi.org/10.5392/JKCA.2014.14.08.319
  64. 이현희, 김은정, & 이민규 (2003). 한국판 정적 정서 및 부적 정서 척도(Positive Affect and Negative Affect Schedule; PANAS)의 타당화 연구. Korean Journal of Clinical Psychology, 22(4), 935–946.