DOI QR코드

DOI QR Code

Comparative study of volumetric change in water-stored and dry-stored complete denture base

공기중과 수중에서 보관한 총의치 의치상의 체적변화에 대한 비교연구

  • Kim, Jinseon (Department of Prosthodontics, School of Dentistry, Kyung Hee University) ;
  • Lee, Younghoo (Department of Prosthodontics, School of Dentistry, Kyung Hee University) ;
  • Hong, Seoung-Jin (Department of Prosthodontics, School of Dentistry, Kyung Hee University) ;
  • Paek, Janghyun (Department of Prosthodontics, School of Dentistry, Kyung Hee University) ;
  • Noh, Kwantae (Department of Prosthodontics, School of Dentistry, Kyung Hee University) ;
  • Pae, Ahran (Department of Prosthodontics, School of Dentistry, Kyung Hee University) ;
  • Kim, Hyeong-Seob (Department of Prosthodontics, School of Dentistry, Kyung Hee University) ;
  • Kwon, Kung-Rock (Department of Prosthodontics, School of Dentistry, Kyung Hee University)
  • 김진선 (경희대학교 치과대학 치과보철학교실) ;
  • 이영후 (경희대학교 치과대학 치과보철학교실) ;
  • 홍성진 (경희대학교 치과대학 치과보철학교실) ;
  • 백장현 (경희대학교 치과대학 치과보철학교실) ;
  • 노관태 (경희대학교 치과대학 치과보철학교실) ;
  • 배아란 (경희대학교 치과대학 치과보철학교실) ;
  • 김형섭 (경희대학교 치과대학 치과보철학교실) ;
  • 권긍록 (경희대학교 치과대학 치과보철학교실)
  • Received : 2020.09.08
  • Accepted : 2020.11.03
  • Published : 2021.01.29

Abstract

Purpose: Generally, patients are noticed to store denture in water when removed from the mouth. However, few studies have reported the advantage of volumetric change in underwater storage over dry storage. To be a reference in defining the proper denture storage method, this study aims to evaluate the volumetric change and dimensional deformation in case of underwater and dry storage. Materials and methods: Definitive casts were scanned by a model scanner, and denture bases were designed with computer-aided design (CAD) software. Twelve denture bases (upper 6, lower 6) were printed with 3D printer. Printed denture bases were invested and flasked with heat-curing method. 6 upper and 6 lower dentures were divided into group A and B, and each group contains 3 upper and 3 lower dentures. Group A was stored dry at room temperature, group B was stored underwater. Group B was scanned at every 24 hours for 28 days and scanned data was saved as stereolithography (SLA) file. These SLA files were analyzed to measure the difference in volumetric change of a month and Kruskal-Wallis test were used for statistical analysis. Best-fit algorithm was used to overlap and 3-dimensional color-coded map was used to observe the changing pattern of impression surface. Results: No significant difference was found in volumetric changes regardless of the storage methods. In dry-stored denture base, significant changes were found in the palate of upper jaw and posterior lingual border of lower jaw in direction away from the underlying tissue, maxillary tuberosity of upper jaw and retromolar pad area of lower jaw in direction towards the underlying tissue. Conclusion: Storing the denture underwater shows less volumetric change of impression surface than storing in the dry air.

목적: 일반적으로 총의치는 환자의 구내에서 제거 시 물에 담가 보관하도록 설명하는데, 수중에서의 총의치의 보관이 상온의 공기중에서 총의치를 보관하는 것과 비교해 체적 안정성에 장점이 있는지에 대한 연구는 부족하다. 본 연구는 의치의 올바른 보관 방법을 규정하는 데에 참고가 될 수 있도록, 수중에서 보관하는 경우와 공기중에 보관하는 경우에 의치상의체적 변화량과 양상을 평가하는 것을 목적으로 한다. 재료 및 방법: 초경석고로 제작한 주모형을 디지털 스캔하여, computer-aided design (CAD) 소프트웨어를 이용해 총의치 의치상을 디자인하고, 3D printing 기법을 이용하여 상악과 하악 각 6개의 시편을 제작하였다. 이를 매몰한 후 열중합 방식으로 온성하여 제작한 레진의치상을 상악과 하악 각 3개씩 그룹 A와 그룹 B로 나누었다. 그룹 A는 상온의 공기중에서 보관되었고, 그룹 B는 상온의 물에 담가 보관하며 24시간 간격으로 28일 동안 스캔하여 stereolithogrphy (SLA) 파일로 저장하였다. 이를 분석하여 한달 간의 체적변화를 측정하였고, best-fit 알고리즘을 이용하여 중첩시켜 3차원 비교 컬러맵을 이용하여 의치상 인상면의 변화 양상을 관찰하였다. 측정한 값은 Kruskal-Wallis test를 이용하여 분석하였다. 결과: 보관방법에 상관없이 총 체적에는 유의한 변화가 없었으나, 공기 중에서 보관한 의치상의 경우 상악 구개부와 하악 구치부 설측 변연에서 조직과 멀어지는 방향으로, 상악 결절부와 하악 후구치 삼각 융기 부위에서는 조직을 압박하는 방향으로 통계적으로 유의한 변화를 보였다. 결론: 수중에서의 의치 보관은 공기중에서의 의치 보관에 비해 의치상 인상면의 변화가 적게 나타났다.

Keywords

References

  1. Vasantha KM, Bhagath S, Jei JB. Historical interest of denture base materials. J Dent Sci 2010;1;103-5. https://doi.org/10.15562/jdmfs.v1i2.6
  2. Gad MM, Fouda SM, Al-Harbi FA, Napankangas R, Raustia A. PMMA denture base material enhancement: a review of fiber, filler, and nanofiller addition. Int J Nanomedicine 2017;12:3801-12. https://doi.org/10.2147/IJN.S130722
  3. Consani RL, Monteiro VL, Mesquita MF, Consani S. The influence of storage on dimensional changes in maxillary acrylic denture bases and the effect on tooth displacement. Eur J Prosthodont Restor Dent 2011;19:105-10.
  4. Darvell BW, Clark RKF. The physical mechanisms of complete denture retention. Br Dent J 2000;189;248-52. https://doi.org/10.1038/sj.bdj.4800734a
  5. Woelfel JB, Paffenbarger GC, Sweeney WT. Changes in dentures during storage in water and in service. J Am Dent Assoc 1961;62:643-57. https://doi.org/10.14219/jada.archive.1961.0117
  6. Dixon DL, Breeding LC, Ekstrand KG. Linear dimensional variability of three denture base resins after processing and in water storage. J Prosthet Dent 1992;68:196-200. https://doi.org/10.1016/0022-3913(92)90304-S
  7. Bartlett D, Carter N, de Baat C, Duyck J, Goffin G, Muller F, Kawai Y. White paper on optimal care and maintenance of full dentures for oral and general health. Oral Health Found 2018;9-14.
  8. Artopoulos A, Juszczyk AS, Rodriguez JM, Clark RK, Radford DR. Three-dimensional processing deformation of three denture base materials. J Prosthet Dent 2013;110:481-7. https://doi.org/10.1016/j.prosdent.2013.07.005
  9. Goodacre BJ, Goodacre CJ, Baba NZ, Kattadiyil MT. Comparison of denture base adaptation between CAD-CAM and conventional fabrication techniques. J Prosthet Dent 2016;116:249-56. https://doi.org/10.1016/j.prosdent.2016.02.017
  10. Kawara M, Komiyama O, Kimoto S, Kobayashi N, Kobayashi K, Nemoto K. Distortion behavior of heat-activated acrylic denture-base resin in conventional and long, low-temperature processing methods. J Dent Res 1998;77:1446-53. https://doi.org/10.1177/00220345980770060901
  11. Parvizi A, Lindquist T, Schneider R, Williamson D, Boyer D, Dawson DV. Comparison of the dimensional accuracy of injection-molded denture base materials to that of conventional pressure-pack acrylic resin. J Prosthodont 2004;13:83-9. https://doi.org/10.1111/j.1532-849x.2004.04014.x
  12. Pavan S, Arioli Filho JN, Santos PHD, Mollo Jr FDA. Effect of microwave treatments on dimensional accuracy of maxillary acrylic resin denture base. Braz Dent J 2005;16:119-23. https://doi.org/10.1590/S0103-64402005000200006
  13. Frejlich S, Dirckx JJ, Goodacre CJ, Swartz ML, Andres CJ. Moire topography for measuring the dimensional accuracy of resin complete denture bases. Int J Prosthodont 1989;2:272-9.
  14. Lee S, Hong SJ, Paek J, Pae A, Kwon KR, Noh K. Comparing accuracy of denture bases fabricated by injection molding, CAD/CAM milling, and rapid prototyping method. J Adv Prosthodont 2019;11:55-64. https://doi.org/10.4047/jap.2019.11.1.55
  15. Taylor PB. Acrylic resins: Their manipulation. J Am Dent Assoc 1941;28;373-87. https://doi.org/10.14219/jada.archive.1941.0064
  16. Kimoto S, Kobayashi N, Kobayashi K, Kawara M. Effect of bench cooling on the dimensional accuracy of heat-cured acrylic denture base material. J Dent 2005;33:57-63. https://doi.org/10.1016/j.jdent.2004.08.002